CSL361 Problem set 8: Householder and Givens Orthogonalization

April 6, 2015

1 Householder $Q R$

Let $v \in \mathbb{R}^{n}$ be non-zero. The $n \times n$ matrix (rank 1 corrections to the identity)

$$
P=I-2 \frac{v v^{T}}{v^{T} v}
$$

is called the Householder reflection. Show that:

1. $P=P^{t}=P^{-1}$.
2. When a vector $x \in \mathbb{R}^{n}$ is multiplied by P, it is reflected across the hyperplane $\operatorname{span}\{v\}^{\perp}$.
3. If

$$
v=x \pm\|x\|_{2} e_{1}
$$

Then,

$$
P x=\mp\|x\|_{2} e_{1} \in \operatorname{span}\left\{e_{1}\right\}
$$

That is, a House holder reflection along $v=x \pm\|x\|_{2} e_{1}$ annihilates all but the first component of x while preserving its norm.
4. Argue that out of the two choices for v for annihilating all but the first component of $x, v=x+\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}$ is better from a numerical point of view. Explain the two choices geometrically.
5. If $P=I-2 v v^{T} / v^{T} v$ and A is a matrix, then show that

$$
P A=\left(I-2 \frac{v v^{T}}{v^{T} v}\right) A=A+v w^{t}
$$

where $w=\beta A^{t} v$ and $\beta=-2 / v^{t} v$. Thus, a Householder update of a matrix involves a matrix-vector multiplication followed by a outerproduct update. Argue that treating P as a general matrix increases work by an order of magnitude.
Also show that the above produces a Householder vector \hat{v} near to the exact v. That is if $\hat{P}=I-2 \hat{v} \hat{v}^{T} / \hat{v}^{T} \hat{v}$, then
(a) $\|\hat{P}-P\|_{2}=O(\mu)$
(b) $f l(\hat{P} A)=P(A+E)$, where $\|E\|_{2}=O\left(\mu\|A\|_{2}\right)$
6. More generally, for a given m-vector x, consider the partioning

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

where x_{1} is a $(k-1)$-vector, $1 \leq k<m$. Show that if we take the Householder vector to be

$$
v=\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right]-\alpha e_{k}
$$

where $\alpha=-\operatorname{sign}\left(x_{k}\right)\left\|x_{2}\right\|_{2}\left(x_{k}\right.$ being the $k^{\text {th }}$ component of $\left.x\right)$, then the resulting Householder transformation annihilates the last $m-k$ components of x.
7. Using the above results show that a sequence of Householder transformations can be defined for $k=1, \ldots, n$ such that all the subdiagonal entries of matrix are annihilated. Show that such a sequence defines a $Q R$ factorization.

2 Givens rotations

Householder reflections are useful for intrducing zeros on a grand scale. However, in situations where it is necessary to zero elements more selectively, Givens rotations are useful. These are rank 2 corrections to identity of the
form

$$
G(i, k, \theta)=\left[\begin{array}{ccccccc}
1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & & \vdots & & \vdots \\
0 & \ldots & c & \ldots & s & \ldots & 0 \\
\vdots & & \vdots & \ddots & \vdots & & \vdots \\
0 & \ldots & -s & \ldots & c & \ldots & 0 \\
\vdots & & \vdots & & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \ldots & 0 & \ldots & 1
\end{array}\right]
$$

where $c=\cos \theta$ and $s=\sin \theta$ for some θ.

1. Show that Givens rotations are orthogonal. In particular, show that premultiplication by $G(i, k, \theta)^{t}$ amounts to a counterclockwise rotation by θ radians in the (i, k) coordinate plane.
2. Show that $k^{t h}$ component of a vector can be set to 0 by premultiplication with $G(i, k, \theta)^{t}$ where

$$
c=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{k}^{2}}} \quad s=\frac{-x_{k}}{\sqrt{x_{i}^{2}+x_{k}^{2}}}
$$

Show also that only rwos i and k are affected.
3. Describe a procedure for Given's $Q R$.
4. Show that the numerical properties of Givens $Q R$ are as favourable as Householder $Q R$.

