CSL361 Problem set 7: Error analysis of $L U$ and some extensions

April 6, 2015

1. Assume that A is an $n \times n$ matrix of floating point numbers. If no zero pivot is encountered during the execution of $L U$ decomposition (without pivoting), then show that the computed triangular matrices \hat{L} and \hat{U} satisfy

$$
\begin{aligned}
& \hat{L} \hat{U}=A+H \\
& |H| \leq 3(n-1) \mu(|A|+|\hat{L}||\hat{U}|)+O\left(\mu^{2}\right)
\end{aligned}
$$

2. Suppose the \hat{L} and \hat{U} computed as above are used in backward and forward substitutions to obtain computed solutions \hat{y} and \hat{x} to $\hat{L} y=b$ and $\hat{U} x=\hat{y}$ respectively. Show that then $(A+E) \hat{x}=b$ with

$$
|E| \leq n \mu(3|A|+5|\hat{L}||\hat{U}|)++O\left(\mu^{2}\right)
$$

3. Gauss-Jordan elimination is a variation of standard Gaussian elimination in which the matrix is reduced to a diagonal form than merely to a traingular form. The elimination matrix used for a given column vector a is of the form

$$
\left[\begin{array}{ccccccc}
1 & \ldots & 0 & -m_{1} & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & -m_{k-1} & 0 & \ldots & 0 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & -m_{k+1} & 1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & -m_{n} & 0 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k-1} \\
a_{k} \\
a_{k+1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
a_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $m_{i}=a_{1} / a_{k}, i=1: n$. Under what situations will GaussJordan elimination be useful? What is its work-load? What are the disadvantages? What can you say about its numerical stability?
4. Show that if all the leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then there exists unique lower-triangular matrices L and M and a unique diagonal matrix D such that $A=L D M^{t}$. How can the factorization be computed?
5. Show that if $A=L D M^{t}$ and A is symmetric, then $L=M$.
6. A matrix A is positive definite if $x^{t} A x>0$ for all non-zero $x \in \mathbb{R}^{n}$. Show that if A is positive definite then it is non-singular.
7. Show that if $A \in \mathbb{R}^{n \times n}$ is positive definite and $X \in \mathbb{R}^{n \times k}$ has rank k, then $B=X^{t} A X \in \mathbb{R}^{k \times k}$ is also positive definite.
8. Show that if A is positive definite then all its principal matrices are also positive definite. In particular, show that all diagonal entries are positive.
9. Show that for a positive definite A the factorization $A=L D M^{t}$ exists and all elements of D are positive.
10. Cholesky factorization: Show that if $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, then there exists a unique lower-triangular matrix $L \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that $A=L L^{t}$. Give an algorithm for Cholesky factorization.
11. Show that if A is a symmetric matrix and P is a permutation matrix, then the update $P A P^{t}$ preserves symmetry. Use the above to give an algorithm for Cholesky factorization with pivoting.
12. Given $A \in \mathbb{R}^{m \times n}$ with the property that $\operatorname{rank}(A)=n$ and $b \in \mathbb{R}^{m}$, show that the following algorithm computes the least square solution $\min \|A x-b\|_{2}$.

> Compute the lower triangular portion of $C=A^{t} A$ $d=A^{t} b$
> Compute the Cholesky factorization $C=L L^{t}$
> Solve $L y=d$ and $L^{t} x=y$

Show that the least square solution is unique. What is the total workload? Is there any advantage over standard Gaussian elimination?
13. Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $b \in \mathbb{R}^{m}$ be given and suppose that an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ has been computed such that

$$
Q^{t} A=R=\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] \begin{gathered}
n \\
m-n
\end{gathered}
$$

is upper-triangular. If

$$
Q^{t} b=\left[\begin{array}{l}
c \\
d
\end{array}\right] \begin{gathered}
n \\
m-n
\end{gathered}
$$

show that,

$$
\|A x-b\|_{2}^{2}=\left\|Q^{t} A x-Q^{t} b\right\|_{2}^{2}=\left\|R_{1} x-c\right\|_{2}^{2}+\|d\|_{2}^{2}
$$

for any $x \in \mathbb{R}^{n}$. Also, if $\operatorname{rank}(A)=\operatorname{rank}\left(R_{1}\right)=n$ then the least square solution is defined by $R_{1} x=c$ with a residual error of $\|d\|_{2}^{2}$. What is the total-work-load if the $Q R$ factorization is computed using Modified Gram-Schmidt? How does it compare with Cholesky?

