CSL361 Problem set 7: Error analysis of *LU* and some extensions

April 6, 2015

1. Assume that A is an $n \times n$ matrix of floating point numbers. If no zero pivot is encountered during the execution of LU decomposition (without pivoting), then show that the computed triangular matrices \hat{L} and \hat{U} satisfy

 $\hat{L}\hat{U} = A + H$ $|H| \le 3(n-1)\mu(|A| + |\hat{L}||\hat{U}|) + O(\mu^2)$

2. Suppose the \hat{L} and \hat{U} computed as above are used in backward and forward substitutions to obtain computed solutions \hat{y} and \hat{x} to $\hat{L}y = b$ and $\hat{U}x = \hat{y}$ respectively. Show that then $(A + E)\hat{x} = b$ with

 $|E| \le n\mu(3|A| + 5|\hat{L}||\hat{U}|) + +O(\mu^2)$

3. Gauss-Jordan elimination is a variation of standard Gaussian elimination in which the matrix is reduced to a diagonal form than merely to a traingular form. The elimination matrix used for a given column vector a is of the form

[1]		0	$-m_1$	0		0	a_1		0
:	·	÷	:	÷	۰.	÷	:		:
0		1	$-m_{k-1}$	0		0	a_{k-1}		0
0		0	1	0		0	a_k	=	a_k
0	• • •	0	$-m_{k+1}$	1		0	a_{k+1}		0
	۰.	÷	:	÷	·	÷	:		:
0		0	$-m_n$	0		1	a_n		0

where $m_i = a_1/a_k$, i = 1 : n. Under what situations will *Gauss-Jordan* elimination be useful? What is its work-load? What are the disadvantages? What can you say about its numerical stability?

- 4. Show that if all the leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then there exists unique lower-triangular matrices L and M and a unique diagonal matrix D such that $A = LDM^t$. How can the factorization be computed?
- 5. Show that if $A = LDM^t$ and A is symmetric, then L = M.
- 6. A matrix A is positive definite if $x^t A x > 0$ for all non-zero $x \in \mathbb{R}^n$. Show that if A is positive definite then it is non-singular.
- 7. Show that if $A \in \mathbb{R}^{n \times n}$ is positive definite and $X \in \mathbb{R}^{n \times k}$ has rank k, then $B = X^t A X \in \mathbb{R}^{k \times k}$ is also positive definite.
- 8. Show that if A is positive definite then all its principal matrices are also positive definite. In particular, show that all diagonal entries are positive.
- 9. Show that for a positive definite A the factorization $A = LDM^t$ exists and all elements of D are positive.
- 10. Cholesky factorization: Show that if $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, then there exists a unique lower-triangular matrix $L \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that $A = LL^t$. Give an algorithm for Cholesky factorization.
- 11. Show that if A is a symmetric matrix and P is a permutation matrix, then the update PAP^t preserves symmetry. Use the above to give an algorithm for Cholesky factorization with pivoting.
- 12. Given $A \in \mathbb{R}^{m \times n}$ with the property that rank(A) = n and $b \in \mathbb{R}^m$, show that the following algorithm computes the least square solution $min||Ax b||_2$.

Compute the lower triangular portion of $C = A^t A$ $d = A^t b$ Compute the Cholesky factorization $C = LL^t$ Solve Ly = d and $L^t x = y$

Show that the least square solution is unique. What is the total workload? Is there any advantage over standard Gaussian elimination?

13. Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ and $b \in \mathbb{R}^m$ be given and suppose that an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ has been computed such that

$$Q^{t}A = R = \begin{bmatrix} R_{1} \\ 0 \end{bmatrix} \begin{bmatrix} n \\ m-n \end{bmatrix}$$

is upper-triangular. If

$$Q^t b = \left[\begin{array}{c} c \\ d \end{array} \right] \begin{array}{c} n \\ m-n \end{array}$$

show that,

$$||Ax - b||_{2}^{2} = ||Q^{t}Ax - Q^{t}b||_{2}^{2} = ||R_{1}x - c||_{2}^{2} + ||d||_{2}^{2}$$

for any $x \in \mathbb{R}^n$. Also, if $rank(A) = rank(R_1) = n$ then the least square solution is defined by $R_1x = c$ with a residual error of $||d||_2^2$. What is the total-work-load if the QR factorization is computed using *Modified Gram-Schmidt*? How does it compare with Cholesky?