
CSL361 Problem set 6: Speeding up computations
is an art and block matrix operations help

March 24, 2017

(For self study)

Block matrix algorithms are those which are “rich” in matrix-matrix
multiplications. Algorithms of this type are likely to be more efficient than
those that just manipulate scalars because more computation is involved
with a given data movement making such algorithms more cache efficient.
For example, k by k matrix multiplication involves 2k3 flops but only 2k2

data. In this tutorial we will investigate some basic block matrix operations.
Consider the following partitioning (blocking) of an m× n matrix A.

A =

 A11 . . . A1q
...

...
Ap1 . . . Apq

 m1
...
mp

n1 . . . nq

where each Aij has mi rows and nj columns such that m1 + . . . + mp = m
and n1 + . . . + nq = n. We say that A is a p × q block matrix. If a block
matrix B has the same structure, we say that B is partitioned conformably
with A.

1. Verify that if A and B are conformable block matrices then C = A+B
is also conformable with Cij = Aij +Bij .

2. Suppose A ∈ Rm×r and B ∈ Rr×n are partitioned as

A =

[
A11 A12

A21 A22

]
m1

m2

r1 r2

B =

[
B11 B12

B21 B22

]
r1
r2

n1 n2

1



with Aij of size mi × rj and Bij of size ri × nj , with m1 + m2 = m,
r1 + r2 = r and n1 + n2 = n. Show that

AB = C =

[
C11 C12

C21 C22

]
m1

m2

n1 n2

with Cij of size mi × nj where Cij = Ai1B1j +Ai2B2j for i = 1, 2 and
j = 1, 2.

3. Suppose

A =

 A11 . . . A1q
...

...
Ap1 . . . Apq

 m1
...
mp

r1 . . . rq

B =

 B11 . . . B1t
...

...
Bq1 . . . Bqt

 r1
...
rq

n1 . . . nt

where Aij of sizemi × rj and Bij of size ri × nj withm1+. . .+mp = m,
r1 + . . .+ rq = r and n1 + . . .+ nt = n.

If we partition the product C = AB as follows

C =

 C11 . . . C1t
...

...
Cp1 . . . Cpt

 m1
...
mp

n1 . . . nt

with Cij of size mi × nj then show that

Cij =

q∑
k=1

AikBkj for i = 1 : p and j = 1 : t

[Hint: Use induction along with the previous problem]

4. A special case of the above is block matrix times vector. Suppose
we partition

A =

 A1
...
Ap

 m1
...
mp

z =

 z1
...
zp

 m1
...
mp

where each Ai and zi has mi rows and m1 + . . . + mp = m. We refer
to Ai as the i-th block row. If x ∈ Rn and Ax = z then show that
Aix = zi for i = 1 : p. Also, show that each zi = Aix can be computed
using either dot or saxpy procedures.

2



5. Another way to partition the matrix-vector multiplication problem is
to partition A and x as follows

A =
[
A1 . . . Aq

]
n1 . . . nq

x =

 x1
...
xq

 n1
...
nq

where each Ai and xi has ni columns and rows respectively. We refer
to Ai as the i-th block column. Show that the product z = Ax has
the form z = A1x1 + . . . Aqxq. Also, show that each zi = Aixi can be
computed using either dot or saxpy procedures.

6. Envisage situations where each of the above four ways of computing
“matrix times vector” may be preferable.

7. Just as scalar level matrix multiplications can be arranged in several
different ways, so can the multiplication of block matrices.

(a) Assume (for simplicity) that A = (Aij) and B = (Bij) are each
N ×N block matrices with α×α blocks, i.e., n = Nα. With this
uniform blocking, if C = (Cij) = AB, then clearly

Cij =

N∑
kb=1

AikbBkbj i = 1 : N j = 1 : N

gives a block dot product procedure.

(b) If we partition A into block columns

A =
[
A1 . . . AN

]
where each Aj has α columns, and if B = (Bij) with Bij ∈ Rα×α,
then clearly

AB = C =
[
C1 . . . CN

]
with Cj =

N∑
k=1

AkBkj

gives a block gaxpy procedure.

(c) If we partition A into block columns (of size α) as before

A =
[
A1 . . . AN

]
3



and B into block rows (of size α)

B =

 B1
...
BN


then clearly

C = AB =
N∑

kb=1

AkbBkb

gives a block outer product procedure.

Try to envisage situations under which each may be preferable and
develop procedures for the above. (Good luck!)

8. Presumably you are familiar with the store-by-row (row major) and
store-by-column (column major) data structures for matrices (if not,
please look up any book on data structures, or ask somebody suit-
able). Design a store-by-block data structure for matrices and show
circumstances under which such a scheme may be useful.

9. Consider Problem 2. In the naive algorithm, Cij = Ai1B1j + Ai2B2j ,
there are 8 multiplications and 4 additions. Strassen (V. Strassen
(1969). ”Gaussian Elimination is Not Optimal”, Numer. Math. 13,
354-356) showed how to compute C with 7 multiplications and 18
additions:

P1 = (A11 +A22)(B11 +B22)
P2 = (A21 +A22)B11

P3 = A11(B12 −B22)
P4 = A22(B21 −B11)
P5 = (A11 +A12)B22

P6 = (A21 −A11)(B11 +B12)
P7 = (A12 −A22)(B21 +B22)
C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6

Please confirm by substitution (I would strongly advise that you use
a symbolic package; this may be a good opportunity to figure out how
to use one). Suppose n = 2m so that the blocks are m×m. Counting

4



operations in C = AB we find that conventional matrix multiplica-
tion involves (2m)3 multiplications and (2m)3 − (2m)2 additions. In
contrast, if Strassen’s algorithm is applied with conventional multipli-
cation at the block level, then 7m3 multiplications and 7m3 + 11m2

additions are required. If m >> 1 then the Strassen’s method involves
about 7/8-th of the arithmetic of the conventional algorithm.

Of course (with our CSL201 training in recursion and divide-and con-
quer) we can recurse (a bit problematic if n is not a power of 2, but
surely we can handle even that?). There is no need to recurse all the
way down to n = 1; when the blocks are sufficiently small (n ≤ nmin)
it may be sensible to use conventional matrix multiplication.

(a) Write a recursive procedure for Strassen’s method.

(b) If nmin >> 1 it suffices to count only the multiplications as the
number of additions are roughly the same. Show that the number
of multiplications required is O(nlog2 7) = O(n2.807).

(c) Argue (as convincingly as possible) that Strassen’s method is of
dubious practical value.

(d) Argue (as convincingly as possible) that Strassen’s method, if
used judiciously and cleverly, can indeed be useful. In case you are
not convinced, D. Bailey (D. Bailey (1988). “Extra High Speed
Matrix Multiplication on the Cray-2”, SIAM J. Sci. and Stat.
Comp., 9, 603-607) showed that with nmin = 128 his Strassen ap-
proach required about 60% time compared to conventional matrix
multiplication.

10. Consider the n by n matrix multiplication C = AB. Assume that
the cache can hold M floating point numbers and that M << n2.
Partition B and C into columns

B =
[
B1 . . . BN

]
α . . . α

C =
[
C1 . . . CN

]
α . . . α

where n = αN . Suppose α has been chosen such that M ≈ n(2α+1) ≈
2n2/N such that a block column of B, a block column of C, and a
column of A can fit into the cache. Here is a matrix multiply procedure
that gets a fair amount of re-use for each Bj brought into the cache.

for j = 1 : N
Load Bj and Cj = 0 into cache

5



for k = 1 : n
Load A(:, k) into cache and update Cj

end
Store completed Cj in main memory

end

The k loop performs a saxpy oriented matrix product Cj = ABj .
Verify that the number of floating point numbers that move through
the cache and main memory “door” during execution of the block
saxpy algorithm is

N∑
j=1

[n(n/N) + n2 + n(n/N)] = (2 +N)n2 = 2n2(1 + n2/M)

Conclude that a large cache helps.

11. A more effective cache utilization results with the following block dot
product scheme. Regard A = (Aij), B = (Bij) and C = (Cij) as
N -by-N block matrices with uniform block size α = n/N . Assume
that N is chosen such that 3α2 ≈ M , i.e., 3 blocks can fit into the
cache. With CL being the cache workspace, we describe the procedure
as follows:

for i = 1 : N
for j = 1 : N
CL(1 : α, 1 : α) = 0
for k = 1 : N

Load Aik and Bkj into cache
CL = CL +AikBkj

end
Store CL in main memory location for Cij

end
end

Show that with this organization the main memory - cache traffic sums
as

n2(1 + 2N) ≈ 2n3
√

3/
√
M

If n = 210 and M = 214 by what factor do the traffic for the two
methods differ?

6


