CSL361 Problem set 6: Speeding up computations
is an art and block matrix operations help

March 24, 2017

(For self study)

Block matrix algorithms are those which are “rich” in matrix-matrix
multiplications. Algorithms of this type are likely to be more efficient than
those that just manipulate scalars because more computation is involved
with a given data movement making such algorithms more cache efficient.
For example, k by k matrix multiplication involves 2k3 flops but only 2k>
data. In this tutorial we will investigate some basic block matrix operations.
Consider the following partitioning (blocking) of an m x n matrix A.

AH N Alq mi
A =
Apt ... Ay my,
ny ... nNg

where each A;; has m; rows and n; columns such that m; +... +m, =m
and n1 + ...+ ny = n. We say that A is a p x ¢ block matrix. If a block
matrix B has the same structure, we say that B is partitioned conformably
with A.

1. Verify that if A and B are conformable block matrices then C = A+ B
is also conformable with Cj; = A;; + B;;.

2. Suppose A € R™*" and B € R™"™ are partitioned as

A - A An my B _ Bi1 B2 1
Ag1 Ag ma Byy B 9
1T ny o

with A;; of size m; x r; and B;j of size r; x nj, with m1 +mg = m,

r1 + 79 = r and nq + ng = n. Show that

Ci1 Ci2 m1

Co1 Co ma
ny n2

ap-c - |

with Cj; of size m; x n; where Cj; = Aj1B1; + AjpBo; for i = 1,2 and
j=1,2.

. Suppose
A11 e Alq mq BH e Blt
A= | : : B = | :
Apl e qu myp Bql e Bqt
m ... Tq ny ... Nt

where A;; of size m; x r; and B;j of size r; X nj with mi+...+m, = m,
ri+...+rg=randni+... +n =n.

If we partition the product C' = AB as follows

011 NN Clt mi
C — . . .
Cpl . Cpt my
ny ... nNng

with Cj; of size m; x n; then show that

q
Cij:ZAikBkj fori=1:pandj=1:t¢

k=1
[Hint: Use induction along with the previous problem)]
. A special case of the above is block matrix times vector. Suppose
we partition

Aq mq z1 my

Ap My Zp My
where each A; and z; has m; rows and m; + ... +m, = m. We refer
to A; as the i-th block row. If x € R™ and Az = z then show that

A;x = z; for i = 1 : p. Also, show that each z; = A;x can be computed
using either dot or saxpy procedures.

1

T'q

5. Another way to partition the matrix-vector multiplication problem is
to partition A and x as follows

x1 ni

A= [A . 4]

ny ... nq
Lq Nq

where each A; and x; has n; columns and rows respectively. We refer
to A; as the i-th block column. Show that the product z = Az has
the form z = Ajx1 + ... Agxq. Also, show that each z; = A;z; can be
computed using either dot or saxpy procedures.

6. Envisage situations where each of the above four ways of computing
“matrix times vector” may be preferable.

7. Just as scalar level matrix multiplications can be arranged in several
different ways, so can the multiplication of block matrices.

(a) Assume (for simplicity) that A = (A;;) and B = (B;;) are each
N x N block matrices with a X @ blocks, i.e., n = Na. With this
uniform blocking, if C' = (C;;) = AB, then clearly

N
Cij:ZAikakbj i=1:N j=1:N
kp=1

gives a block dot product procedure.
(b) If we partition A into block columns

A=[A4A ... Ay]

where each A; has a columns, and if B = (B;;) with B;; € R**?,
then clearly

N
AB=C=[C1 ... Oy] with C; = ApBy;
k=1

gives a block gaxpy procedure.

(c) If we partition A into block columns (of size a) as before

A=[A4 ... Ay]

and B into block rows (of size «)
By
By
then clearly

N
C=AB=) ABy,
ky=1

gives a block outer product procedure.

Try to envisage situations under which each may be preferable and
develop procedures for the above. (Good luck!)

. Presumably you are familiar with the store-by-row (row major) and
store-by-column (column major) data structures for matrices (if not,
please look up any book on data structures, or ask somebody suit-
able). Design a store-by-block data structure for matrices and show
circumstances under which such a scheme may be useful.

. Consider Problem 2. In the naive algorithm, C;; = A;1B1j + Aj2Baj,
there are 8 multiplications and 4 additions. Strassen (V. Strassen
(1969). ”Gaussian Elimination is Not Optimal”, Numer. Math. 183,
354-356) showed how to compute C' with 7 multiplications and 18

additions:
P = (A1 + Ax)(Bi + B2)
Py (A21 + A22)B11

P3 = Ay (B2 — B)

Py = Ay(B2 — Biy)

Ps = (A4 Ap2)Ba

Ps = (A — An)(Bu + Bi2)
Py = (Aig — Ag) (B2 + Ba2)
Cih = PP+P—P+ P

Ci2 = P3+PF;5

Cor = P+ Py

Cao = PP+P—-P+F

Please confirm by substitution (I would strongly advise that you use
a symbolic package; this may be a good opportunity to figure out how
to use one). Suppose n = 2m so that the blocks are m x m. Counting

10.

operations in C' = AB we find that conventional matrix multiplica-
tion involves (2m)? multiplications and (2m)3 — (2m)? additions. In
contrast, if Strassen’s algorithm is applied with conventional multipli-
cation at the block level, then 7m? multiplications and 7m? + 11m?
additions are required. If m >> 1 then the Strassen’s method involves
about 7/8-th of the arithmetic of the conventional algorithm.

Of course (with our CSL201 training in recursion and divide-and con-
quer) we can recurse (a bit problematic if n is not a power of 2, but
surely we can handle even that?). There is no need to recurse all the
way down to n = 1; when the blocks are sufficiently small (n < npyp)
it may be sensible to use conventional matrix multiplication.

(a) Write a recursive procedure for Strassen’s method.

(b) If nypin >> 1 it suffices to count only the multiplications as the
number of additions are roughly the same. Show that the number
of multiplications required is O(n'°%27) = O(n?807).

(c) Argue (as convincingly as possible) that Strassen’s method is of
dubious practical value.

(d) Argue (as convincingly as possible) that Strassen’s method, if
used judiciously and cleverly, can indeed be useful. In case you are
not convinced, D. Bailey (D. Bailey (1988). “Extra High Speed
Matrix Multiplication on the Cray-2”, SIAM J. Sci. and Stat.
Comp., 9, 603-607) showed that with n,,;, = 128 his Strassen ap-
proach required about 60% time compared to conventional matrix
multiplication.

Consider the n by n matrix multiplication C = AB. Assume that
the cache can hold M floating point numbers and that M << n?.

Partition B and C into columns

B = [B .. By] C =[C ... Cn]
o ... « o ...

where n = aN. Suppose « has been chosen such that M ~ n(2a+1) ~
2n2/N such that a block column of B, a block column of C, and a
column of A can fit into the cache. Here is a matrix multiply procedure
that gets a fair amount of re-use for each B; brought into the cache.

forj=1: N
Load B; and C; = 0 into cache

11.

fork=1:n
Load A(:, k) into cache and update C}
end
Store completed C; in main memory
end

The k loop performs a saxpy oriented matrix product C; = AB;.
Verify that the number of floating point numbers that move through
the cache and main memory “door” during execution of the block
saxpy algorithm is

N
> “[n(n/N) +n® +n(n/N)] = (2+ N)n® = 2n°(1 + n* /M)
j=1

Conclude that a large cache helps.

A more effective cache utilization results with the following block dot
product scheme. Regard A = (A4;;), B = (By;) and C = (Cj;) as
N-by-N block matrices with uniform block size @ = n/N. Assume
that N is chosen such that 3a? ~ M, i.e., 3 blocks can fit into the
cache. With Cf, being the cache workspace, we describe the procedure
as follows:

fori=1:N
forj=1: N
Cr(l:a,1:a)=0
fork=1:N
Load A;, and By; into cache
Cr=0Cp+ AikBkj
end
Store C7, in main memory location for Cj;
end
end

Show that with this organization the main memory - cache traffic sums
as

n?(1+42N) ~ 2n®*V3/VM

If n = 2'% and M = 2 by what factor do the traffic for the two
methods differ?

