## Problem set 5: SVD, Orthogonal projections, etc.

February 21, 2017

## 1 SVD

1. Work out again the $S V D$ theorem done in the class:

If $A$ is a real $m \times n$ matrix then here exist orthogonal matrices

$$
\mathbf{U}=\left[\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right] \in \mathbb{R}^{m \times m} \text { and } \mathbf{V}=\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right] \in \mathbb{R}^{n \times n}
$$

such that

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}
$$

where

$$
\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right) \quad p=\min \{m, n\}
$$

and $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{p}$.
2. Suppose that $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>\sigma_{r+1}=\ldots=\sigma_{p}=0$. Then show that
(a) $\operatorname{rank}(\mathbf{A})=r$
(b) $\operatorname{null}(\mathbf{A})=\left[\mathbf{v}_{\mathbf{r}+\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right]$
(c) $\operatorname{range}(\mathbf{A})=\left[\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{r}}\right]$
(d) If $\mathbf{U}_{\mathbf{r}}=\mathbf{U}(:, 1: r), \boldsymbol{\Sigma}_{\mathbf{r}}=\boldsymbol{\Sigma}(1: r, 1: r)$ and $\mathbf{V}_{\mathbf{r}}=\mathbf{V}(:, 1: r)$, then

$$
\mathbf{A}_{\mathbf{r}}=\mathbf{U}_{\mathbf{r}} \boldsymbol{\Sigma}_{\mathbf{r}} \mathbf{V}_{\mathbf{r}}^{T}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}^{T}
$$

3. Show that
(a) $\|\mathbf{A}\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{p}^{2}$
(b) $\|\mathbf{A}\|_{2}^{2}=\sigma_{1}$
4. Let the $S V D$ of $\mathbf{A}$ be as above. If $k<r=\operatorname{rank}(\mathbf{A})$ and

$$
\mathbf{A}_{\mathbf{k}}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}^{T}
$$

then show that

$$
\min _{\operatorname{rank}(\mathbf{B}=k)}\|\mathbf{A}-\mathbf{B}\|_{2}^{2}=\left\|\mathbf{A}-\mathbf{A}_{\mathbf{k}}\right\|_{2}^{2}=\sigma_{1}
$$

5. Show (without using condition numbers) that if $\mathbf{A}$ is square ( $n \times n$ ) and $\sigma_{n}>0$ is small, then solving $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ is unstable.
6. Show that in the $\left\|\|_{2}\right.$ norm

$$
\operatorname{cond}(\mathbf{A})=\frac{\sigma_{1}}{\sigma_{n}}
$$

## 2 Least-squares

1. Consider the least-squares problem:

Find the least-squares solution to the $m \times n$ set of equations $\mathbf{A x}=\mathbf{b}$, where $m>n$ and $\operatorname{rank}(\mathbf{A})=n$
Show that the following constitute a solution:
(a) Find the $S V D \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$
(b) Set $\mathbf{b}^{\prime}=\mathbf{U}^{T} \mathbf{b}$
(c) Find the vector $\mathbf{y}$ defined by $y_{i}=b_{i}^{\prime} / \sigma_{i}$, where $\sigma_{i}$ is the $i^{\text {th }}$ diagonal entry of $\boldsymbol{\Sigma}$
(d) The solution is $\mathbf{x}=\mathbf{V y}$
2. Consider the least-squares problem:

Find the general least-squares solution to the $m \times n$ set of equations $\mathbf{A x}=\mathbf{b}$, where $m>n$ and $\operatorname{rank}(\mathbf{A})=r<n$
Show that the following constitute a solution:
(a) Find the $S V D \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$
(b) Set $\mathbf{b}^{\prime}=\mathbf{U}^{T} \mathbf{b}$
(c) Find the vector $\mathbf{y}$ defined by $y_{i}=b_{i}^{\prime} / \sigma_{i}$, for $i=1, \ldots, r$, and $y_{i}=0$ otherwise.
(d) The solution $\mathbf{x}$ of minimum norm $\|\mathbf{x}\|$ is $\mathbf{V y}$
(e) The general solution is

$$
\mathbf{x}=\mathbf{V} \mathbf{y}+\lambda_{r+1} \mathbf{v}_{r+1}+\ldots+\lambda_{n} \mathbf{v}_{n}
$$

where $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}$ are the last $n-r$ columns of $\mathbf{V}$.
3. Show that the least-squares solution to an $m \times n$ system of equations $\mathbf{A x}=\mathbf{b}$ of rank $n$ is given by $\mathbf{A}^{+} \mathbf{b}$ (pseudo-inverse). In the case of a deficient-rank system, $\mathbf{x}=\mathbf{A}^{+} \mathbf{b}$ is the solution that minimizes $\|\mathbf{x}\|$.
4. Show that if $\mathbf{A}$ is an $m \times n$ matrix of rank $n$, then $\mathbf{A}^{+}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$ and, in general, a least-squares solution can be obtained by solving the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

5. Weighted least-squares: Let $\mathbf{C}$ be a positive definite matrix. Then the $\mathbf{C}$-norm is defined as $\|\mathbf{a}\|_{\mathbf{C}}=\left(\mathbf{a}^{T} \mathbf{C a}\right)^{1 / 2}$. The weighted leastsquares problem is one of minimizing $\|\mathbf{A x}-\mathbf{b}\|_{\mathbf{C}}$. The most common weighting is when $\mathbf{C}$ is diagonal. Show that weigthed least-sqaures solution can be obtained by solving:

$$
\left(\mathbf{A}^{T} \mathbf{C A}\right) \mathbf{x}=\mathbf{A}^{T} \mathbf{C b}
$$

6. Consider the constrained least squares problem:

Given A of size $n \times n$, find $\mathbf{x}$ that minimizes $\|\mathbf{A} \mathbf{x}\|$ subject to $\|\mathbf{x}\|=1$. Show that the solution is given by the last column of $\mathbf{V}$ where $\mathbf{A}=$ $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ is the $S V D$ of $\mathbf{A}$.
7. Consider the following constrained least-squares problem: Given an $m \times n$ matrix $\mathbf{A}$ with $m \geq n$, find the vector $\mathbf{x}$ that minimizes $\|\mathbf{A} \mathbf{x}\|$ subject to $\|\mathbf{x}\|=1$ and $\mathbf{C x}=\mathbf{0}$.
Show that a solution is given as:
(a) If $\mathbf{C}$ has fewer rows than columns, then add $\mathbf{0}$ rows to $\mathbf{C}$ to make it square. Compute the $S V D \mathbf{C}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$. Let $\mathbf{C}^{\perp}$ be the matrix obtained from $\mathbf{V}$ after deleting the first $r$ columns where $r$ is the number of non-zero entries in $\boldsymbol{\Sigma}$.
(b) Find the solution to minimization of $\left\|\mathbf{A C}{ }^{\perp} \mathbf{x}^{\prime}\right\|$ subject to $\left\|\mathbf{x}^{\prime}\right\|=$ 1.
(c) The solution is obtained as $\mathbf{x}=\mathbf{C}^{\perp} \mathbf{x}^{\prime}$.
8. Consider the following constrained least-squares problem: Given an $m \times n$ matrix $\mathbf{A}$ with $m \geq n$, find the vector $\mathbf{x}$ that minimizes $\|\mathbf{A} \mathbf{x}\|$ subject to $\|\mathbf{x}\|=1$ and $\mathbf{x} \in \operatorname{range}(\mathbf{G})$.
Show that a solution is given as:
(a) Compute the $S V D \mathbf{G}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$. Let
(b) Let $\mathbf{U}^{\prime}$ be the matrix of first $r$ columns of $\mathbf{G}$ where $r=\operatorname{rank}(\mathbf{G})$.
(c) Find the solution to minimization of $\left\|\mathbf{A U}^{\prime} \mathbf{x}^{\prime}\right\|$ subject to $\left\|\mathbf{x}^{\prime}\right\|=$ 1.
(d) The solution is obtained as $\mathbf{x}=\mathbf{U}^{\prime} \mathbf{x}^{\prime}$.

## 3 Orthogonal Projections

Let $S \subseteq \mathbb{R}^{n}$ be a subspace. $\mathbf{P} \in \mathbb{R}^{n \times n}$ is the orthogonal projection onto $S$ if $\operatorname{range}(\mathbf{P})=S, \mathbf{P}^{2}=\mathbf{P}$ and $\mathbf{P}^{T}=\mathbf{P}$.

1. Show the following:
(a) If $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{P}$ is an orthogonal projection on to $S(\mathbf{P x} \in S)$, then $(\mathbf{I}-\mathbf{P})$ is an orthogonal projection onto $S^{\perp}\left((\mathbf{I}-\mathbf{P}) \mathbf{x} \in S^{\perp}\right)$ where $S^{\perp}$ is the orthogonal complement of $S$.
(b) The orthogonal projection onto a subspace is unique.
(c) If $\mathbf{v} \in \mathbb{R}^{n}$, then $\mathbf{P}=\mathbf{v v}^{T} / \mathbf{v}^{T} \mathbf{v}$ is the orthogonal projection onto $S=\operatorname{span}\{\mathbf{v}\}$.
(d) If the columns of $\mathbf{V}=\left[\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right]$ are an orthonormal basis for $S$, then $\mathbf{V V}^{T}$ is the unique orthonormal projection onto $S$.
2. Suppose that the $S V D$ of $\mathbf{A}$ is $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ and $\operatorname{rank}(\mathbf{A})=r$. If we have the $\mathbf{U}$ and $\mathbf{V}$ partitionings:

$$
\mathbf{U}=\left[\begin{array}{cc}
\mathbf{U}_{\mathbf{r}} & \tilde{\mathbf{U}}_{\mathbf{r}} \\
r & m-r
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{cc}
\mathbf{V}_{\mathbf{r}} & \tilde{\mathbf{V}}_{\mathbf{r}} \\
r & n-r
\end{array}\right]
$$

Then, show that
(a) $\mathbf{V}_{\mathbf{r}} \mathbf{V}_{\mathbf{r}}{ }^{T}=\operatorname{projection}$ onto $\operatorname{null}(\mathbf{A})^{\perp}=\operatorname{range}\left(\mathbf{A}^{T}\right)$
(b) $\tilde{\mathbf{V}}_{\mathbf{r}} \tilde{\mathbf{V}}_{\mathbf{r}}^{T}=$ projection onto $\operatorname{null}(\mathbf{A})$
(c) $\mathbf{U}_{\mathbf{r}} \mathbf{U}_{\mathbf{r}}{ }^{T}=$ projection onto range $(\mathbf{A})$
(d) $\tilde{\mathbf{U}}_{\mathbf{r}} \tilde{\mathbf{U}}_{\mathbf{r}}^{T}=\operatorname{projection}$ onto $\operatorname{range}(\mathbf{A})^{\perp}=\operatorname{null}\left(\mathbf{A}^{T}\right)$
3. Let $\mathbf{v} \in \mathbb{R}^{n}$ be non-zero. The $n \times n$ matrix

$$
\mathbf{P}=\mathbf{I}-2 \frac{\mathbf{v} \mathbf{v}^{T}}{\mathbf{v}^{T} \mathbf{v}}
$$

is the Householder reflection. Show that:
(a) $\mathbf{P}$ is an orthogonal projection.
(b) When a vector $\mathbf{v} \in \mathbb{R}^{n}$ is multiplied by $\mathbf{P}$, it is reflected in the hyperplane $\operatorname{span}\{\mathbf{v}\}^{\perp}$.
(c) If

$$
\mathbf{v}=\mathbf{x} \pm\|\mathbf{x}\|_{2} \mathbf{e}_{\mathbf{1}}
$$

Then,

$$
\mathbf{P} \mathbf{x}=\mp\|\mathbf{x}\|_{2} \mathbf{e}_{\mathbf{1}} \in \operatorname{span}\left\{\mathbf{e}_{\mathbf{1}}\right\}
$$

