
Problem set 5: SVD, Orthogonal projections, etc.

February 21, 2017

1 SVD

1. Work out again the SVD theorem done in the class:
If A is a real m× n matrix then here exist orthogonal matrices

U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n

such that
A = UΣVT

where
Σ = diag(σ1, σ2, . . . , σp) p = min{m,n}

and σ1 ≥ σ2 ≥ . . . ≥ σp.

2. Suppose that σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0. Then show
that

(a) rank(A) = r

(b) null(A) = [vr+1, . . . ,vn]

(c) range(A) = [u1, . . . ,ur]

(d) If Ur = U(:, 1 : r), Σr = Σ(1 : r, 1 : r) and Vr = V(:, 1 : r), then

Ar = UrΣrVr
T =

r∑
i=1

σiuivi
T

3. Show that

(a) ‖A‖2F = σ21 + σ22 + . . .+ σ2p

(b) ‖A‖22 = σ1
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4. Let the SVD of A be as above. If k < r = rank(A) and

Ak =

k∑
i=1

σiuivi
T

then show that

min
rank(B=k)

‖A−B‖22 = ‖A−Ak‖22 = σ1

5. Show (without using condition numbers) that if A is square (n × n)
and σn > 0 is small, then solving x =A−1b is unstable.

6. Show that in the ‖ ‖2 norm

cond(A) =
σ1
σn

2 Least-squares

1. Consider the least-squares problem:
Find the least-squares solution to the m× n set of equations Ax = b,
where m > n and rank(A) = n
Show that the following constitute a solution:

(a) Find the SVD A = UΣVT

(b) Set b′ = UTb

(c) Find the vector y defined by yi = b′i/σi, where σi is the ith diag-
onal entry of Σ

(d) The solution is x = Vy

2. Consider the least-squares problem:
Find the general least-squares solution to the m × n set of equations
Ax = b, where m > n and rank(A) = r < n
Show that the following constitute a solution:

(a) Find the SVD A = UΣVT

(b) Set b′ = UTb

(c) Find the vector y defined by yi = b′i/σi, for i = 1, . . . , r, and
yi = 0 otherwise.

(d) The solution x of minimum norm ‖x‖ is Vy

2



(e) The general solution is

x = Vy + λr+1vr+1 + . . .+ λnvn

where vr+1, . . . ,vn are the last n− r columns of V.

3. Show that the least-squares solution to an m× n system of equations
Ax = b of rank n is given by A+b (pseudo-inverse). In the case of a
deficient-rank system, x = A+b is the solution that minimizes ‖x‖.

4. Show that if A is an m×n matrix of rank n, then A+ = (ATA)−1AT

and, in general, a least-squares solution can be obtained by solving the
normal equations

(ATA)x = ATb

5. Weighted least-squares: Let C be a positive definite matrix. Then
the C-norm is defined as ‖a‖C = (aTCa)1/2. The weighted least-
squares problem is one of minimizing ‖Ax− b‖C. The most common
weighting is when C is diagonal. Show that weigthed least-sqaures
solution can be obtained by solving:

(ATCA)x = ATCb

6. Consider the constrained least squares problem:
Given A of size n×n, find x that minimizes ‖Ax‖ subject to ‖x‖ = 1.
Show that the solution is given by the last column of V where A =
UΣVT is the SVD of A.

7. Consider the following constrained least-squares problem: Given an
m × n matrix A with m ≥ n, find the vector x that minimizes ‖Ax‖
subject to ‖x‖ = 1 and Cx = 0.
Show that a solution is given as:

(a) If C has fewer rows than columns, then add 0 rows to C to make
it square. Compute the SVD C = UΣVT . Let C⊥ be the matrix
obtained from V after deleting the first r columns where r is the
number of non-zero entries in Σ.

(b) Find the solution to minimization of ‖AC⊥x′‖ subject to ‖x′‖ =
1.

(c) The solution is obtained as x = C⊥x′.
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8. Consider the following constrained least-squares problem: Given an
m × n matrix A with m ≥ n, find the vector x that minimizes ‖Ax‖
subject to ‖x‖ = 1 and x ∈ range(G).
Show that a solution is given as:

(a) Compute the SVD G = UΣVT . Let

(b) Let U′ be the matrix of first r columns of G where r = rank(G).

(c) Find the solution to minimization of ‖AU′x′‖ subject to ‖x′‖ =
1.

(d) The solution is obtained as x = U′x′.

3 Orthogonal Projections

Let S ⊆ Rn be a subspace. P ∈ Rn×n is the orthogonal projection onto S if
range(P) = S, P2 = P and PT = P.

1. Show the following:

(a) If x ∈ Rn and P is an orthogonal projection on to S (Px ∈ S),
then (I−P) is an orthogonal projection onto S⊥ ((I−P)x ∈ S⊥)
where S⊥ is the orthogonal complement of S.

(b) The orthogonal projection onto a subspace is unique.

(c) If v ∈ Rn, then P = vvT /vTv is the orthogonal projection onto
S = span{v}.

(d) If the columns of V = [v1, . . . ,vk] are an orthonormal basis for
S, then VVT is the unique orthonormal projection onto S.

2. Suppose that the SVD of A is A = UΣVT and rank(A) = r. If we
have the U and V partitionings:

U = [ Ur Ũr ]
r m− r

V = [ Vr Ṽr ]
r n− r

Then, show that

(a) VrVr
T = projection onto null(A)⊥ = range(AT )

(b) ṼrṼ
T
r = projection onto null(A)

(c) UrUr
T = projection onto range(A)

(d) ŨrŨ
T
r = projection onto range(A)⊥ = null(AT )
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3. Let v ∈ Rn be non-zero. The n× n matrix

P = I− 2
vvT

vTv

is the Householder reflection. Show that:

(a) P is an orthogonal projection.

(b) When a vector v ∈ Rn is multiplied by P, it is reflected in the
hyperplane span{v}⊥.

(c) If
v = x± ‖x‖2e1

Then,
Px = ∓‖x‖2e1 ∈ span{e1}
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