Problem set 5: SVD, Orthogonal projections, etc.

February 21, 2017

1 SVD

1. Work out again the SVD theorem done in the class: If A is a real $m \times n$ matrix then here exist orthogonal matrices

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_m] \in \mathbb{R}^{m \times m} \text{ and } \mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n] \in \mathbb{R}^{n \times n}$$

such that

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where

$$\Sigma = diag(\sigma_1, \sigma_2, \dots, \sigma_p) \quad p = min\{m, n\}$$

and $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p$.

- 2. Suppose that $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = \sigma_p = 0$. Then show that
 - (a) $rank(\mathbf{A}) = r$

(b)
$$null(\mathbf{A}) = [\mathbf{v}_{\mathbf{r+1}}, \dots, \mathbf{v}_{\mathbf{n}}]$$

- (c) $range(\mathbf{A}) = [\mathbf{u}_1, \dots, \mathbf{u}_r]$
- (d) If $\mathbf{U}_{\mathbf{r}} = \mathbf{U}(:, 1:r), \ \mathbf{\Sigma}_{\mathbf{r}} = \mathbf{\Sigma}(1:r, 1:r) \text{ and } \mathbf{V}_{\mathbf{r}} = \mathbf{V}(:, 1:r), \text{ then}$

$$\mathbf{A}_{\mathbf{r}} = \mathbf{U}_{\mathbf{r}} \boldsymbol{\Sigma}_{\mathbf{r}} \mathbf{V}_{\mathbf{r}}^{T} = \sum_{i=1}^{T} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$$

3. Show that

(a) $\|\mathbf{A}\|_{F}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} + \ldots + \sigma_{p}^{2}$ (b) $\|\mathbf{A}\|_{2}^{2} = \sigma_{1}$ 4. Let the SVD of **A** be as above. If $k < r = rank(\mathbf{A})$ and

$$\mathbf{A}_{\mathbf{k}} = \sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^{T}$$

then show that

$$\min_{rank(\mathbf{B}=k)} \|\mathbf{A} - \mathbf{B}\|_2^2 = \|\mathbf{A} - \mathbf{A}_{\mathbf{k}}\|_2^2 = \sigma_1$$

- 5. Show (without using condition numbers) that if **A** is square $(n \times n)$ and $\sigma_n > 0$ is small, then solving $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ is unstable.
- 6. Show that in the $|| ||_2$ norm

$$cond(\mathbf{A}) = \frac{\sigma_1}{\sigma_n}$$

2 Least-squares

- Consider the least-squares problem: Find the least-squares solution to the m × n set of equations Ax = b, where m > n and rank(A) = n Show that the following constitute a solution:
 - (a) Find the SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
 - (b) Set $\mathbf{b}' = \mathbf{U}^T \mathbf{b}$
 - (c) Find the vector **y** defined by $y_i = b'_i / \sigma_i$, where σ_i is the i^{th} diagonal entry of Σ
 - (d) The solution is $\mathbf{x} = \mathbf{V}\mathbf{y}$

2. Consider the least-squares problem:

Find the general least-squares solution to the $m \times n$ set of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, where m > n and $rank(\mathbf{A}) = r < n$ Show that the following constitute a solution:

- (a) Find the SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
- (b) Set $\mathbf{b}' = \mathbf{U}^T \mathbf{b}$
- (c) Find the vector \mathbf{y} defined by $y_i = b'_i / \sigma_i$, for $i = 1, \ldots, r$, and $y_i = 0$ otherwise.
- (d) The solution \mathbf{x} of minimum norm $\|\mathbf{x}\|$ is $\mathbf{V}\mathbf{y}$

(e) The general solution is

$$\mathbf{x} = \mathbf{V}\mathbf{y} + \lambda_{r+1}\mathbf{v}_{r+1} + \ldots + \lambda_n\mathbf{v}_n$$

where $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ are the last n - r columns of **V**.

- 3. Show that the least-squares solution to an $m \times n$ system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ of rank n is given by $\mathbf{A}^+\mathbf{b}$ (pseudo-inverse). In the case of a deficient-rank system, $\mathbf{x} = \mathbf{A}^+\mathbf{b}$ is the solution that minimizes $\|\mathbf{x}\|$.
- 4. Show that if **A** is an $m \times n$ matrix of rank n, then $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ and, in general, a least-squares solution can be obtained by solving the *normal equations*

$$(\mathbf{A}^T \mathbf{A})\mathbf{x} = \mathbf{A}^T \mathbf{b}$$

5. Weighted least-squares: Let C be a positive definite matrix. Then the C-norm is defined as $\|\mathbf{a}\|_{\mathbf{C}} = (\mathbf{a}^T \mathbf{C} \mathbf{a})^{1/2}$. The weighted leastsquares problem is one of minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathbf{C}}$. The most common weighting is when C is diagonal. Show that weighted least-squares solution can be obtained by solving:

$$(\mathbf{A}^T \mathbf{C} \mathbf{A}) \mathbf{x} = \mathbf{A}^T \mathbf{C} \mathbf{b}$$

- 6. Consider the constrained least squares problem: Given \mathbf{A} of size $n \times n$, find \mathbf{x} that minimizes $\|\mathbf{A}\mathbf{x}\|$ subject to $\|\mathbf{x}\| = 1$. Show that the solution is given by the last column of \mathbf{V} where $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$ is the SVD of \mathbf{A} .
- 7. Consider the following constrained least-squares problem: Given an $m \times n$ matrix **A** with $m \ge n$, find the vector **x** that minimizes $\|\mathbf{Ax}\|$ subject to $\|\mathbf{x}\| = 1$ and $\mathbf{Cx} = \mathbf{0}$. Show that a solution is given as:
 - (a) If **C** has fewer rows than columns, then add **0** rows to **C** to make it square. Compute the $SVD \mathbf{C} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$. Let \mathbf{C}^{\perp} be the matrix obtained from **V** after deleting the first *r* columns where *r* is the number of non-zero entries in $\mathbf{\Sigma}$.
 - (b) Find the solution to minimization of $\|\mathbf{A}\mathbf{C}^{\perp}\mathbf{x}'\|$ subject to $\|\mathbf{x}'\| = 1$.
 - (c) The solution is obtained as $\mathbf{x} = \mathbf{C}^{\perp} \mathbf{x}'$.

- 8. Consider the following constrained least-squares problem: Given an $m \times n$ matrix \mathbf{A} with $m \ge n$, find the vector \mathbf{x} that minimizes $\|\mathbf{A}\mathbf{x}\|$ subject to $\|\mathbf{x}\| = 1$ and $\mathbf{x} \in range(\mathbf{G})$. Show that a solution is given as:
 - (a) Compute the SVD $\mathbf{G} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$. Let
 - (b) Let \mathbf{U}' be the matrix of first r columns of \mathbf{G} where $r = rank(\mathbf{G})$.
 - (c) Find the solution to minimization of $\|\mathbf{A}\mathbf{U}'\mathbf{x}'\|$ subject to $\|\mathbf{x}'\| = 1$.
 - (d) The solution is obtained as $\mathbf{x} = \mathbf{U}'\mathbf{x}'$.

3 Orthogonal Projections

Let $S \subseteq \mathbb{R}^n$ be a subspace. $\mathbf{P} \in \mathbb{R}^{n \times n}$ is the *orthogonal projection* onto S if $range(\mathbf{P}) = S, \mathbf{P}^2 = \mathbf{P}$ and $\mathbf{P}^T = \mathbf{P}$.

- 1. Show the following:
 - (a) If $\mathbf{x} \in \mathbb{R}^n$ and \mathbf{P} is an orthogonal projection on to $S (\mathbf{Px} \in S)$, then $(\mathbf{I} - \mathbf{P})$ is an orthogonal projection onto $S^{\perp} ((\mathbf{I} - \mathbf{P})\mathbf{x} \in S^{\perp})$ where S^{\perp} is the orthogonal complement of S.
 - (b) The *orthogonal projection* onto a subspace is unique.
 - (c) If $\mathbf{v} \in \mathbb{R}^n$, then $\mathbf{P} = \mathbf{v}\mathbf{v}^T/\mathbf{v}^T\mathbf{v}$ is the orthogonal projection onto $S = span\{\mathbf{v}\}.$
 - (d) If the columns of $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_k]$ are an orthonormal basis for S, then $\mathbf{V}\mathbf{V}^T$ is the unique orthonormal projection onto S.
- 2. Suppose that the *SVD* of **A** is $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ and $rank(\mathbf{A}) = r$. If we have the **U** and **V** partitionings:

$$\mathbf{U} = \begin{bmatrix} \mathbf{U}_{\mathbf{r}} & \tilde{\mathbf{U}}_{\mathbf{r}} \end{bmatrix} \mathbf{V} = \begin{bmatrix} \mathbf{V}_{\mathbf{r}} & \tilde{\mathbf{V}}_{\mathbf{r}} \end{bmatrix}$$
$$r \quad m-r \qquad r \quad n-r$$

Then, show that

- (a) $\mathbf{V_r} \mathbf{V_r}^T$ = projection onto $null(\mathbf{A})^{\perp} = range(\mathbf{A}^T)$
- (b) $\tilde{\mathbf{V}}_{\mathbf{r}} \tilde{\mathbf{V}}_{\mathbf{r}}^T = \text{projection onto } null(\mathbf{A})$
- (c) $\mathbf{U}_{\mathbf{r}} \mathbf{U}_{\mathbf{r}}^{T}$ = projection onto $range(\mathbf{A})$
- (d) $\tilde{\mathbf{U}}_{\mathbf{r}}\tilde{\mathbf{U}}_{\mathbf{r}}^{T}$ = projection onto $range(\mathbf{A})^{\perp} = null(\mathbf{A}^{T})$

3. Let $\mathbf{v} \in \mathbb{R}^n$ be non-zero. The $n \times n$ matrix

$$\mathbf{P} = \mathbf{I} - 2\frac{\mathbf{v}\mathbf{v}^T}{\mathbf{v}^T\mathbf{v}}$$

is the *Householder reflection*. Show that:

- (a) \mathbf{P} is an orthogonal projection.
- (b) When a vector $\mathbf{v} \in \mathbb{R}^n$ is multiplied by \mathbf{P} , it is reflected in the hyperplane $span\{\mathbf{v}\}^{\perp}$.
- (c) If

$$\mathbf{v} = \mathbf{x} \pm \|\mathbf{x}\|_2 \mathbf{e_1}$$

Then,

$$\mathbf{Px} = \mp \|\mathbf{x}\|_2 \mathbf{e_1} \in span\{\mathbf{e_1}\}$$