CSL361 Problem set 4: Basic linear algebra

February 21, 2017
[Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab.

1 Row-reduced echelon matrices

1. Consider the following systems of equation
(a)

$$
\begin{aligned}
x_{1}-x_{2} & +2 x_{3}=1 \\
2 x_{1} & +2 x_{3}=1 \\
x_{1}-3 x_{2} & +4 x_{3}=2
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}+2 x_{4}=1 \\
& x_{1}+x_{2}-x_{3}+x_{4}=2 \\
& x_{1}+7 x_{2}-5 x_{3}-x_{4}=3
\end{aligned}
$$

Find out whether they have solutions. If so, describe explicitly all solutions.
2. Let

$$
\mathbf{A}=\left[\begin{array}{rrr}
3 & -1 & 2 \\
2 & 1 & 1 \\
1 & -3 & 0
\end{array}\right]
$$

for which triples $\left(y_{1}, y_{2}, y_{3}\right)$ does the system $\mathbf{A X}=\mathbf{Y}$ have a solution?
3. Let

$$
\mathbf{A}=\left[\begin{array}{rrrr}
3 & -6 & 2 & -1 \\
-2 & 4 & 1 & 3 \\
0 & 0 & 1 & 1 \\
1 & -2 & 1 & 0
\end{array}\right]
$$

for which $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ does the system $\mathbf{A X}=\mathbf{Y}$ have a solution?
4. Suppose \mathbf{R} and \mathbf{R}^{\prime} are 2×3 row-reduced echelon matrices and that the systems $\mathbf{R X}=\mathbf{0}$ and $\mathbf{R}^{\prime} \mathbf{X}=\mathbf{0}$ have exactly the same solutions. Prove that $\mathbf{R}=\mathbf{R}^{\prime}$
5. Let

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
-1 & 0 & 3 & 5 \\
1 & -2 & 1 & 1
\end{array}\right]
$$

Find a row-reduced echelon matrix \mathbf{R} which is row-equivalent to \mathbf{A} and an invertible 3×3 matrix \mathbf{P} such that $\mathbf{R}=\mathbf{P A}$.
6. For each of the three matrices

$$
\left[\begin{array}{rrr}
2 & 5 & -1 \\
4 & -1 & 2 \\
6 & 4 & 1
\end{array}\right],\left[\begin{array}{rrr}
1 & -1 & 2 \\
3 & 2 & 4 \\
0 & 1 & -2
\end{array}\right],\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

use elementary row operations to discover whether it is invertible, and to find the inverse in case it is.
7. Suppose \mathbf{A} is a 2×1 matrix and that \mathbf{B} is a 1×2 matrix. Prove that $\mathbf{C}=\mathbf{A B}$ is not invertible.
8. Let \mathbf{A} be an $n \times n$ matrix. Prove the following:
(a) If \mathbf{A} is invertible and $\mathbf{A B}=\mathbf{0}$ for some $n \times n$ matrix \mathbf{B}, the $\mathbf{B}=\mathbf{0}$.
(b) If \mathbf{A} is not invertible, then there exists an $n \times n$ matrix \mathbf{B} such that $\mathbf{A B}=\mathbf{0}$ but $\mathbf{B} \neq \mathbf{0}$.
9. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Prove, using elementary row operations, that \mathbf{A} is invertible if and only if $(a d-b c) \neq 0$.
10. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
5 & 0 & 0 \\
1 & 5 & 0 \\
0 & 1 & 5
\end{array}\right]
$$

For which \mathbf{X} does there exist a scalar c such that $\mathbf{A X}=c \mathbf{X}$?
11. An $n \times n$ matrix \mathbf{A} is upper-triangular if $A_{i j}=0$ for $i>j$. Prove that \mathbf{A} is invertible if and only if every entry on its main diagonal is distinct from 0 .
12. Prove that if \mathbf{A} is an $m \times n$ matrix, \mathbf{B} is an $n \times m$ matrix and $n<m$, then $\mathbf{A B}$ is not invertible (generalization of a previous problem).
13. Let \mathbf{A} be an $m \times n$ matrix. Show that by means of a finite number of elementary row and/or column operations one can pass from \mathbf{A} to a matrix \mathbf{R} which is both row-reduced echelon and column-reduced echelon, i.e., $R_{i j}=0$ if $i \neq j, R_{i i}=1,1 \leq i \leq r, R_{i i}=0, i>r$. Show that $\mathbf{R}=\mathbf{P A Q}$ where \mathbf{P} is an invertible $n \times n$ matrix and \mathbf{Q} is an invertible $m \times m$ matrix.

2 Vector spaces and subspaces

1. Show that the following are vector spaces:
(a) The n-tuple space, F^{n} : Let F be a Field and let V be the set of all n-tuples $\alpha=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of scalars $x_{i} \in F$. If $\beta=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ with $y_{i} \in F$ then their sum is defined as

$$
\alpha+\beta=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

and the product of a scalar c and a vector α is

$$
c \alpha=\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right)
$$

(b) The space of $m \times n$ matrices, $F^{m \times n}$: under usual matrix addition and multiplication of a matrix with a scalar.
(c) The space of functions from a set to a Field: under the operations:

$$
(f+g)(s)=f(s)+g(s)
$$

and

$$
(c f)(s)=c f(s)
$$

(d) The space of polynomial functions over a Field: with addition and scalar multiplication as defined above.
2. Which of the following sets of vectors $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ in \mathbb{R}^{n} are subspaces of $\mathbb{R}^{n}(n \geq 3)$?
(a) all α such that $a_{1} \geq 0$;
(b) all α such that $a_{1}+3 a_{2}=a_{3}$;
(c) all α such that $a_{2}=a_{1}^{2}$;
(d) all α such that $a_{1} a_{2}=0$;
(e) all α such that a_{2} is rational.
3. Let V be the (real) vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Which of the following are subspaces of V ?
(a) all f such that $f\left(x^{2}\right)=f(x)^{2}$;
(b) all f such that $f(0)=f(1)$;
(c) all f such that $f(3)=1+f(-5)$;
(d) all f such that $f(-1)=0$;
(e) all f which are continuous.
4. Let W be the set of all $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}$ which satisfy

$$
\begin{aligned}
& \begin{array}{c}
2 x_{1}-x_{2}+\frac{4}{3} x_{3}-x_{4} \\
x_{1}-\frac{2}{3} x_{3}
\end{array} \\
& 9 x_{1}-3 x_{2}+6 x_{3}-3 x_{4}-3 x_{5}=0
\end{aligned}
$$

Find a finite set of vectors which spans W.
5. Let F be a Field and let n be a positive integer ($n \geq 2$). Let V be a vector space of all $n \times n$ matrices over F. Which of the following set of matrices A in V are subspaces of V ?
(a) all invertible A;
(b) all non-invertible A;
(c) all A such that $A B=B A$, where B is some fixed matrix in V;
(d) all A such that $A^{2}=A$.
6. (a) Prove that the only subspaces of \mathbb{R}^{1} are \mathbb{R}^{1} and the zero subspace.
(b) Prove that a subspace of \mathbb{R}^{2} is \mathbb{R}^{2}, or the zero subspace, or consists of all scalar multiples of some fixed vector in \mathbb{R}^{2}.
(c) What can you say about the subspaces of \mathbb{R}^{3} ?
7. Let \mathbf{A} be a $m \times n$ matrix over F. Show that the set of all vectors \mathbf{X} such that $\mathbf{A X}=\mathbf{0}$ is a subspace of F^{n}. This subspace is called the null space of \mathbf{A} and its dimension in the nullity of \mathbf{A}.
8. Let \mathbf{A} be a $m \times n$ matrix over F. Show that the set of all vectors spanned by the row vectors of \mathbf{A} is a subspace of F^{n}. This subspace is called the row space of \mathbf{A} and its dimension in the row rank of A.
9. Let \mathbf{A} be a $m \times n$ matrix over F. Show that the set of all vectors \mathbf{Y} such that $\mathbf{A X}=\mathbf{Y}$ has a solution for \mathbf{X} is a subspace of F^{m}. This subspace is called the range space of \mathbf{A} and its dimension in the column rank of A (why?).
10. Show that for any matrix A
(a) nullity + row rank $=n$
(b) nullity + column rank $=n$
and conclude that
row rank of $\mathbf{A}=$ column rank of \mathbf{A}
11. Consider the 5×5 matrix

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & 0 \\
1 & 2 & -1 & -1 & 0 \\
0 & 0 & 1 & 4 & 0 \\
2 & 4 & 1 & 10 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find an invertible matrix \mathbf{P} such that $\mathbf{P A}$ is a row-reduced echelon matrix \mathbf{R}.
(b) Find a basis for the row space W of \mathbf{R}.
(c) Say which vectors $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)$ are in W.
(d) Find the coordinate matrix of each vector $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right) \in W$ in the ordered basis chosen in (b).
(e) Write each vector $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right) \in W$ as a linear combination of the rows of \mathbf{A}.
(f) Give an explicit description of the null space of \mathbf{A}.
(g) Find a basis for the null space.
(h) For what column matrices \mathbf{Y} does the equation $\mathbf{A X}=\mathbf{Y}$ have solutions \mathbf{X} ?
(i) Explicitly find the range space of \mathbf{A} and find a basis.
(j) Verify the relations regarding the nullity, row rank and column rank of \mathbf{A}.

3 Coordinates

1. Let $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be an ordered basis for \mathbb{R}^{3} where

$$
\alpha_{1}=(1,0,-1), \quad \alpha_{2}=(1,1,1), \quad \alpha_{3}=(1,0,0)
$$

What are the coordinates of (a, b, c) in the ordered basis \mathcal{B} ?
2. Let $\alpha=\left(x_{1}, x_{2}\right)$ and $\beta=\left(y_{1}, y_{2}\right)$ be vectors in \mathbb{R}^{2} such that

$$
x_{1} y_{1}+x_{2} y_{2}=0 \text { and } x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y^{2}=1
$$

Show that $\mathcal{B}=\{\alpha, \beta\}$ is a basis for \mathbb{R}^{2}. Find the coordinates of (a, b) in this ordered basis. What do the conditions mean geometrically?
3. Consider the matrix

$$
\mathbf{P}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Show that \mathbf{P} is invertible. Conclude that \mathbf{P} represents a transformation of coordinates in \mathbb{R}^{2}. What is the geometric interpretation of the change of coordinates represented by \mathbf{P} ?
4. Let V be a vector space over the complex numbers of all functions from \mathbb{R} to C, i.e., the space of all complex valued functions on the real line. Let $f_{1}(x)=1, f_{2}(x)=e^{i x}$ and $f_{3}(x)=e^{-i x}$.
(a) Prove that f_{1}, f_{2}, f_{3} are linearly independent.
(b) Let $g_{1}(x)=1, g_{2}(x)=\cos x$ and $g_{3}(x)=\sin x$. Find an invertible 3×3 matrix \mathbf{P} such that

$$
g_{j}=\sum_{i=1}^{3} P_{i j} f_{i}
$$

5. Let V be the real vector space of all polynomial functions from \mathbb{R} into \mathbb{R} of degree 2 or less. Let t be a fixed number and define

$$
g_{1} x=1, \quad g_{2}(x)=x+t, \quad g_{3}(x)-(x+t)^{2}
$$

Prove that $\mathcal{B}=\left\{g_{1}, g_{2}, g_{3}\right\}$ is a basis for V. If

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}
$$

what are the coordinates of f in this ordered basis \mathcal{B} ?

