CSL361 Problem set 4: Basic linear algebra

February 21, 2017

[Note:] If the numerical matrix computations turn out to be tedious, you may use the function **rref** in **Matlab**.

1 Row-reduced echelon matrices

1. Consider the following systems of equation

(a)

		$\begin{array}{c} x_1\\ 2x_1 \end{array}$	_	x_2	++	$2x_3$ $2x_3$	=	1 1	
(b)	x_1	x_1	$-2x_2$	$5x_2$ +	$+$ x_3	$4x_3$ +	$=$ $2x_4$	2 =	1
	$\begin{array}{c} x_1 \\ x_1 \\ x_1 \end{array}$	+ +	$x_2 \\ 7x_2$	_	x_3 $5x_3$	+ -	$\begin{array}{c} x_4 \\ x_4 \end{array}$	=	$\frac{2}{3}$

Find out whether they have solutions. If so, describe explicitly all solutions.

 $2. \ Let$

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{bmatrix}.$$

for which triples (y_1, y_2, y_3) does the system $\mathbf{AX} = \mathbf{Y}$ have a solution?

3. Let

$$\mathbf{A} = \begin{bmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{bmatrix}$$

for which (y_1, y_2, y_3, y_4) does the system $\mathbf{AX} = \mathbf{Y}$ have a solution?

- 4. Suppose **R** and **R'** are 2×3 row-reduced echelon matrices and that the systems **RX** = **0** and **R'X** = **0** have exactly the same solutions. Prove that **R** = **R'**
 - $\mathbf{A} = \left[\begin{array}{rrrr} 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 5 \\ 1 & -2 & 1 & 1 \end{array} \right]$

Find a row-reduced echelon matrix **R** which is row-equivalent to **A** and an invertible 3×3 matrix **P** such that **R** = **PA**.

6. For each of the three matrices

F 9 5 1	ר ר	Γ1	1	<u>م</u> ا	1	1	2	3	4
$\begin{bmatrix} 2 & 3 & -1 \\ 4 & 1 & 0 \end{bmatrix}$		1	-1	2		0	2	3	4
4 - 1 2	,	3	2	4	,	0	0	3	4
$\begin{bmatrix} 6 & 4 & 1 \end{bmatrix}$		0	1	-2			Õ	0	1

use elementary row operations to discover whether it is invertible, and to find the inverse in case it is.

- 7. Suppose **A** is a 2×1 matrix and that **B** is a 1×2 matrix. Prove that $\mathbf{C} = \mathbf{AB}$ is not invertible.
- 8. Let **A** be an $n \times n$ matrix. Prove the following:
 - (a) If **A** is invertible and AB = 0 for some $n \times n$ matrix **B**, the B = 0.
 - (b) If **A** is not invertible, then there exists an $n \times n$ matrix **B** such that AB = 0 but $B \neq 0$.
- 9. Let

5. Let

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Prove, using elementary row operations, that **A** is invertible *if and* only if $(ad - bc) \neq 0$.

10. Let

$$\mathbf{A} = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}$$

For which **X** does there exist a scalar c such that $\mathbf{AX} = c\mathbf{X}$?

- 11. An $n \times n$ matrix **A** is **upper-triangular** if $A_{ij} = 0$ for i > j. Prove that **A** is invertible *if and only if* every entry on its main diagonal is distinct from 0.
- 12. Prove that if **A** is an $m \times n$ matrix, **B** is an $n \times m$ matrix and n < m, then **AB** is not invertible (generalization of a previous problem).
- 13. Let **A** be an $m \times n$ matrix. Show that by means of a finite number of elementary row and/or column operations one can pass from **A** to a matrix **R** which is both *row-reduced echelon* and *column-reduced echelon*, i.e., $R_{ij} = 0$ if $i \neq j$, $R_{ii} = 1, 1 \leq i \leq r$, $R_{ii} = 0, i > r$. Show that **R** = **PAQ** where **P** is an invertible $n \times n$ matrix and **Q** is an invertible $m \times m$ matrix.

2 Vector spaces and subspaces

- 1. Show that the following are vector spaces:
 - (a) The *n*-tuple space, F^n : Let F be a Field and let V be the set of all *n*-tuples $\alpha = (x_1, x_2, \ldots, x_n)$ of scalars $x_i \in F$. If $\beta = (y_1, y_2, \ldots, y_n)$ with $y_i \in F$ then their sum is defined as

 $\alpha + \beta = (x_1 + y_1, \dots, x_n + y_n)$

and the product of a scalar c and a vector α is

$$c\alpha = (cx_1, cx_2, \dots, cx_n)$$

- (b) The space of $m \times n$ matrices, $F^{m \times n}$: under usual matrix addition and multiplication of a matrix with a scalar.
- (c) The space of functions from a set to a Field: under the operations:

$$(f+g)(s) = f(s) + g(s)$$

and

$$(cf)(s) = cf(s)$$

- (d) The space of polynomial functions over a Field: with addition and scalar multiplication as defined above.
- 2. Which of the following sets of vectors $\alpha = (a_1, \ldots, a_n)$ in \mathbb{R}^n are subspaces of \mathbb{R}^n $(n \ge 3)$?

- (a) all α such that $a_1 \geq 0$;
- (b) all α such that $a_1 + 3a_2 = a_3$;
- (c) all α such that $a_2 = a_1^2$;
- (d) all α such that $a_1a_2 = 0$;
- (e) all α such that a_2 is rational.
- 3. Let V be the (real) vector space of all functions $f : \mathbb{R} \to \mathbb{R}$. Which of the following are subspaces of V?
 - (a) all f such that $f(x^2) = f(x)^2$;
 - (b) all f such that f(0) = f(1);
 - (c) all f such that f(3) = 1 + f(-5);
 - (d) all f such that f(-1) = 0;
 - (e) all f which are continuous.
- 4. Let W be the set of all $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$ which satisfy

$2x_1$	_	x_2	+	$\frac{4}{3}x_{3}$	—	x_4			=	0
x_1			+	$\frac{2}{3}x_{3}$			—	x_5	=	0
$9x_1$	_	$3x_2$	+	$6x_3$	_	$3x_4$	_	$3x_5$	=	0

Find a finite set of vectors which spans W.

- 5. Let F be a Field and let n be a positive integer $(n \ge 2)$. Let V be a vector space of all $n \times n$ matrices over F. Which of the following set of matrices A in V are subspaces of V?
 - (a) all invertible A;
 - (b) all non-invertible A;
 - (c) all A such that AB = BA, where B is some fixed matrix in V;
 - (d) all A such that $A^2 = A$.
- 6. (a) Prove that the only subspaces of \mathbb{R}^1 are \mathbb{R}^1 and the zero subspace.
 - (b) Prove that a subspace of \mathbb{R}^2 is \mathbb{R}^2 , or the zero subspace, or consists of all scalar multiples of some fixed vector in \mathbb{R}^2 .
 - (c) What can you say about the subspaces of \mathbb{R}^3 ?
- 7. Let **A** be a $m \times n$ matrix over *F*. Show that the set of all vectors **X** such that $\mathbf{AX} = \mathbf{0}$ is a subspace of F^n . This subspace is called the **null space** of **A** and its dimension in the **nullity** of **A**.

- 8. Let \mathbf{A} be a $m \times n$ matrix over F. Show that the set of all vectors spanned by the row vectors of \mathbf{A} is a subspace of F^n . This subspace is called the **row space** of \mathbf{A} and its dimension in the **row rank** of \mathbf{A} .
- 9. Let **A** be a $m \times n$ matrix over *F*. Show that the set of all vectors **Y** such that $\mathbf{AX} = \mathbf{Y}$ has a solution for **X** is a subspace of F^m . This subspace is called the **range space** of **A** and its dimension in the **column rank** of **A** (why?).
- 10. Show that for any matrix \mathbf{A}
 - (a) **nullity** + row rank = n
 - (b) **nullity** + **column rank** = n

and conclude that $\mathbf{row} \ \mathbf{rank} \ \mathrm{of} \ \mathbf{A} = \mathbf{column} \ \mathbf{rank} \ \mathrm{of} \ \mathbf{A}$

11. Consider the 5×5 matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 2 & 4 & 1 & 10 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Find an invertible matrix **P** such that **PA** is a row-reduced echelon matrix **R**.
- (b) Find a basis for the row space W of \mathbf{R} .
- (c) Say which vectors $(b_1, b_2, b_3, b_4, b_5)$ are in W.
- (d) Find the coordinate matrix of each vector $(b_1, b_2, b_3, b_4, b_5) \in W$ in the ordered basis chosen in (b).
- (e) Write each vector $(b_1, b_2, b_3, b_4, b_5) \in W$ as a linear combination of the rows of **A**.
- (f) Give an explicit description of the **null space** of **A**.
- (g) Find a basis for the **null space**.
- (h) For what column matrices \mathbf{Y} does the equation $\mathbf{A}\mathbf{X} = \mathbf{Y}$ have solutions \mathbf{X} ?
- (i) Explicitly find the **range space** of **A** and find a basis.
- (j) Verify the relations regarding the **nullity**, **row rank** and **col-umn rank** of **A**.

3 Coordinates

1. Let $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ be an ordered basis for \mathbb{R}^3 where

$$\alpha_1 = (1, 0, -1), \quad \alpha_2 = (1, 1, 1), \quad \alpha_3 = (1, 0, 0)$$

What are the coordinates of (a, b, c) in the ordered basis \mathcal{B} ?

2. Let $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2)$ be vectors in \mathbb{R}^2 such that

$$x_1y_1 + x_2y_2 = 0$$
 and $x_1^2 + x_2^2 = y_1^2 + y^2 = 1$

Show that $\mathcal{B} = \{\alpha, \beta\}$ is a basis for \mathbb{R}^2 . Find the coordinates of (a, b) in this ordered basis. What do the conditions mean geometrically?

3. Consider the matrix

$$\mathbf{P} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Show that **P** is invertible. Conclude that **P** represents a transformation of coordinates in \mathbb{R}^2 . What is the geometric interpretation of the change of coordinates represented by **P**?

- Let V be a vector space over the complex numbers of all functions from ℝ to C, i.e., the space of all complex valued functions on the real line. Let f₁(x) = 1, f₂(x) = e^{ix} and f₃(x) = e^{-ix}.
 - (a) Prove that f_1, f_2, f_3 are linearly independent.
 - (b) Let $g_1(x) = 1$, $g_2(x) = \cos x$ and $g_3(x) = \sin x$. Find an invertible 3×3 matrix **P** such that

$$g_j = \sum_{i=1}^3 P_{ij} f_i$$

5. Let V be the real vector space of all polynomial functions from \mathbb{R} into \mathbb{R} of degree 2 or less. Let t be a fixed number and define

$$g_1 x = 1$$
, $g_2(x) = x + t$, $g_3(x) - (x + t)^2$

Prove that $\mathcal{B} = \{g_1, g_2, g_3\}$ is a basis for V. If

$$f(x) = c_0 + c_1 x + c_2 x^2$$

what are the coordinates of f in this ordered basis \mathcal{B} ?