COL726 Problem set 3: Polynomials and interpolation

January 16, 2017

1 First some more rounding and chopping

1. Consider the numbers

$$
\begin{aligned}
& x_{1}=0.1234 \times 10^{1} \\
& x_{2}=0.3429 \times 10^{0} \\
& x_{3}=0.1289 \times 10^{-1} \\
& x_{4}=0.9895 \times 10^{-3} \\
& x_{5}=0.9763 \times 10^{-5}
\end{aligned}
$$

Add these numbers using four-decimal-digit chopped floating point arithmetic in both forward and reverse. Which is more accurate? Why?
2. Suggest methods for evaluating each of
(a) $e^{x} \simeq 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
(b) $\cos x \simeq 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots$
(c) $\sin x \simeq x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots$
for $x=25$ up to 12 digits of accuracy. Pay attention to both truncation and round-off errors. Try out with Matlab programs.
3. Suppose you have to evaluate

$$
F(x)=x \sin x /(1-\cos x)
$$

near $x=0$. Do you foresee any problems? Suggest a method to overcome the problem. Again try out on Matlab.

2 Interpolation

1. Derive the divided difference formula again (not to be done in the tute class).
2. Consider the following algorithm for computing $d_{k}=f\left[x_{1}, \ldots, x_{k}\right]$, $k=1,2, \ldots, n+1$ given the data points $x_{1}, x_{2}, \ldots, x_{n}$ and function values $f_{1}, f_{2}, \ldots, f_{n}$.

Algorithm:

$$
\begin{aligned}
& \text { Input }\left\{x_{1}, x_{2}, \ldots, x_{n}, f_{1}, f_{2}, \ldots, f_{n}\right\} \\
& \text { for } j=1,2, \ldots, n+1 \\
& \quad d_{j} \leftarrow f_{j} \\
& \text { for } k=1,2, \ldots, n \\
& \quad \text { for } j=n+1, n, \ldots, k+1 \\
& \quad d_{j} \leftarrow\left(d_{j}-d_{j-1}\right) /\left(x_{j}-x_{j-k}\right) \\
& \text { Output }\left\{d_{1}, d_{2}, \ldots, d_{n+1}\right\}
\end{aligned}
$$

Prove the correctness and determine the time and space requirements.
3. Prove the following result.

If $p(x)$ is the interpolating polynomial which agrees with $f(x)$ at $n+1$ points in $[a, b]$ and if f is $n+1$ times continuously differentiable in $[a, b]$ then for any $\bar{x} \in[a, b]$ there is a value $\eta \in[a, b]$ such that the truncation error is given by
$E_{T}(\bar{x})=f(\bar{x})-p(\bar{x})=\left[f^{(n+1)}(\eta) /(n+1)!\right]\left(\bar{x}-x_{1}\right)\left(\left(\bar{x}-x_{2}\right) \ldots\left(\bar{x}-x_{n+1}\right)\right.$
What conclusion can you draw about extrapolation/truncation errors?
4. Show that under the conditions of the previous problem, and with P_{k} the polynomial that interpolates f at $x_{1}, x_{2}, \ldots, x_{k+1}$, for $k=$ $1,2, \ldots n$, the difference

$$
P_{k+1}(\bar{x})-P_{k}(\bar{x})
$$

is an estimate of the truncation error in $P_{k}(\bar{x})$. This estimate is usable whenever $f^{(k+1)}(x)$ does not change greatly in the interval containing x_{1}, \ldots, x_{k+2} and \bar{x}.
5. Consider Horner's method for evaluating a polynomial

$$
\begin{aligned}
& \text { Input }\left\{n, a_{0}, a_{1}, \ldots, a_{n}\right\} \\
& \text { Input } x \\
& p \leftarrow a_{n} \\
& \text { for } k=n-1, n-2, \ldots, 0 \\
& \quad p \leftarrow x * p+a_{k} \\
& \text { Output }\{x, p\}
\end{aligned}
$$

Show that the backward error estimate is given by

$$
\hat{p}=\hat{a}_{n} x^{n}+\ldots+\hat{a}_{1} x+\hat{a}_{0}
$$

where,

$$
\hat{a}_{k}= \begin{cases}a_{k}\langle 2 n\rangle & k=n \\ a_{k}\langle 2 k+1\rangle & k=n-1, \ldots, 0\end{cases}
$$

Conclude that if $n r \mu \leq 0.1$, then the relative error bound can be obtained as

$$
\frac{\left|\hat{a}_{k}-a_{k}\right|}{\left|a_{k}\right|} \leq \begin{cases}2 n \mu^{\prime} & k=n \\ (2 k+1) \mu^{\prime} & k=n-1, \ldots, 0\end{cases}
$$

Also, show that the forward error estimate is given by

$$
|\hat{p}-p(x)|=\left[2 n\left|a_{n} x^{n}\right|+(2 n-1)\left|a_{n-1} x^{n-1}\right|+3 \mid a_{1} x\right]\left|+\left|a_{0}\right|\right] \mu^{\prime}
$$

6. Given Algorithm in 2 for computing the divided difference coefficients, an algorithm for evaluating Newton's formula can be given as

$$
\begin{aligned}
& \text { Input }\left\{x_{1}, \ldots, x_{n+1}, d_{1}, \ldots, d_{n+1}\right\} \\
& \text { Input } x \\
& p \leftarrow d_{n+1} \\
& \text { for } i=n, n-1, \ldots, 1 \\
& \quad p \leftarrow p *\left(x-x_{i}\right)+d_{i} \\
& \text { Output }\{x, p\}
\end{aligned}
$$

Show that the Algorithms in 2 and 6 evaluate a polynomial \hat{p} that interpolates a function \hat{f} at $x_{1}, x_{2}, \ldots, x_{n+1}$. For all x in an interval of length l that contain $x_{1}, x_{2}, \ldots, x_{n+1}$, the following bound holds:

$$
|f(x)-\hat{f}(x)| \leq 9\left(n^{3}+n^{2}+1\right)\left(l^{n} / m^{n}\right) \bar{f} \mu^{\prime}
$$

where,

$$
\bar{f}=\max \left\{\left|f\left(x_{i}\right)\right|: i=1,2, \ldots, n+1\right\}
$$

and

$$
m=\min \left\{\left|x_{i}-x_{j}\right|: i, j=1,2, \ldots, n+1, i \neq j\right\}
$$

[Note: This one will be hard! Perhaps you should split it up into several sub-problems?]
7. Conclude from the previous problems that the rounding errors in the two algorithms are equivalent to a change in the finction f. This change will be small provided that
(a) n is not too large
(b) the interval length is not large
(c) the data points $x_{1}, x_{2}, \ldots, x_{n+1}$ are not too close together, and
(d) the maximum value \bar{f} is not much larger than any other $f(x)$ for x in the interval.
8. Suppose that each of the following functions has been tabulated at $x_{1}=0, x_{2}=0.1, x_{3}=2$ and $x_{4}=0.3$. Estimate the truncation error at $\bar{x}=0.15$ for the polynomial of degree 3 that interpolates at the given tabulated points.
(a) $f(x)=\sin x$
(b) $f(x)=2 x^{3}$
(c) $f(x)=1 /(x+1)$
9. Use Algorithm 6 to approximate $f(-0.5)$ where f is the function $f(x)=1 /\left(1+25 x^{2}\right)$. Print out a table of $(n, f(-0.5), \epsilon)(\epsilon$ being the absolute error) for $n=1,2,3,4$. Also print out the truncation error estimates $P_{n+1}-P_{n}$. Verify that the derivatives of this function change so rapidly that these error estimates are not so accurate.
10. Suppose f is a function that has been tabulated at $x=0,0.1,0.2,0.3,0.4, \ldots$ and suppose $\left|f^{(k)}(x)\right| \leq k, k=0,1,2, \ldots$. What is the best value of n to use for interpolating f at $\bar{x}=0.25$? That is, what value of n will result in the sum of truncation error and rounding error to be as small as possible?

