
CSL361 Problem set 2: To err is human and to
blame it on a computer is more like it.

January 6, 2017

[Note:

1. This problem set is for home-work and will not be discussed in the
class.

2. In this tutorial we sometimes use 0.xyz . . . as the normalization instead
of x.yz . . . Sorry about the confusion!

]

1 Chopping and Rounding

1. Consider a system of base 10 floating point numbers, with normalized
4-digits,with the exponent between -5 and 4. Determine the chopping
and the rounding errors in representing the following numbers and try
to relate the results to the stuff discussed in the class. (Note: the
subscript C means that you are to chop ’em off, while R refers to the
fact that you are to round ’em off.)

(765.4567)C , (765.4567)R, (765.499)R, (100.05)R

2 Computer Arithmetic

Computing 10.1− 9.93 with p = 3 we get,

x = 1.01× 101

y = 0.99× 101

x− y = 0.02× 101

The correct answer is 0.17, so the computed difference is wrong in every
digit! How bad can the error be?
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Suppose that one extra digit is added to guard against this situation (a
guard digit). That is, the smaller number is truncated to p + 1 digits, and
then the result of the subtraction is rounded to p digits. With a guard digit,
the previous example becomes

x = 1.010× 101

y = 0.993× 101

x− y = 0.17× 100

which is better.

1. Prove that Using a floating-point format with parameters β and p, and
computing differences using p digits, the relative error of the result can
be as large as β − 1.

2. Prove that If x and y are floating-point numbers with parameters β
and p, and if subtraction is done with p + 1 digits (i.e. one guard
digit), then the relative rounding error in the result is less than 2ε.

3. Evaluate and estimate the errors in the following cases. Assume the
base to be 10, with normalized 4-digits and the provision of a guard-
bit. (In the case of differnce compare your answer with the case where
you have (costly!) registers with 4 guard-bits, and also the case where
you have no guard bits).

(0.1004× 100)− (0.9958× 10−1), (0.1234× 100)× (0.1000× 101)

4. Prove that the presence of a guard digit ensures that a computed sum
differs from the correctly chopped value by no more than unity in the
pth digit.

5. Let * denote any of the operations +,-,×,÷.Let fl(x ∗ y) represent the
computed value of (x ∗ y). Assuming that x and y represent normal-
ized floating point numbers and y 6= 0 when we consider division,
show

|(x ∗ y)− fl(x ∗ y)|
|x ∗ y|

≤ rµ

where,
r = 1 in ideal rounded arithmetic
r = 2 in ideal chopped arithmetic or during multiplication and division
with a guard digit
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r = 4 during addition or subtraction with a guard digit, or single-
length register multiplication and division.
r ≥ 4 in single-length register addition and subtractions.

6. Show that the unit rounding error µ can also be defined to be the
largest number so that fl(x + 1.0) = 1.0 for every x with 0 ≤ x < µ.
Write a computer program that will determine the unit rounding error
by using this definition. Take care that binary-to-decimal conversion
does not affect your result.

3 Accumulation of Errors

1. Do a backward and forward error analysis on the computation of a
product of five non-zero numbers:p = x1x2x3x4x5

2. Theorem Let ε1, ε2, ..., εn be rounding errors that satisfy |εk| ≤ rµ,
k = 1, 2, . . . , n. If nrµ ≤ 0.1, then there is a δn that satisfies the fol-
lowing conditions

(1 + ε1)...(1 + εk)

(1 + εk+1)...(1 + εn)
= 1 + δn

and

δn ≤ n(1.06rµ)

Try proving the above theorem by proving these lemmas:

Lemma 1 If 0 ≤ rµ ≤ 1, then 1− nrµ ≤ (1− rµ)n.
{Hint: Expand f(y) = (1− y)n in a Taylor’s series}

Lemma 2 If 0 ≤ x ≤ 0.1, then 1 + x ≤ ex ≤ 1 + 1.06x.
{Hint: Expand ex in a Taylor’s series.}

Lemma 3 If 0 ≤ nrµ ≤ 0.1, then (1 + rµ)n ≤ 1 + 1.06nrµ.
{Hint: Use Lemma 2}

Lemma 4 If |εi| ≤ rµ for i=1,2,....,n, and nrµ0.1, then
1− nrµ ≤ (1 + ε1)(1 + ε2)....(1 + εn) ≤ 1 + 1.06nrµ.
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Lemma 5 If 0 ≤ x ≤ 0.1, then (1− x)−1 ≤ 1 + 1.06x.

Lemma 6 If |εi| ≤ rµ for i=1,2,....,n and nrµ ≤ 0.1, then

1− nrµ ≤ 1

(1 + ε1)...(1 + εn)
≤ 1 + 1.06nrµ

{Hint: Use Lemmas 4 and 5}

Now combine Lemmas 4 and 6 to prove the above Theorem.
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