next up previous
Next: Least-squares Up: CSL361 Problem set 5: Previous: CSL361 Problem set 5:

SVD

  1. Work out again the SVD theorem done in the class:
    If $ A$ is a real $ m \times n$ matrix then here exist orthogonal matrices

        and $\displaystyle {\bf V} = \left[{\bf v_1},\ldots,{\bf v_n}\right] \in \mathbb{R}^{n \times n}
$

    such that

    $\displaystyle {\bf A} = {\bf U}{\bf\Sigma}{\bf V}^T
$

    where

    $\displaystyle {\bf\Sigma} = diag(\sigma_1,\sigma_2,\ldots,\sigma_p) \;\;\;p = min\{m,n\}
$

    and $ \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p$.
  2. Suppose that $ \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = \sigma_p = 0$. Then show that
    1. $ rank({\bf A}) = r$
    2. $ null({\bf A}) = \left[{\bf v_{r+1}},\ldots,{\bf v_n}\right]$
    3. $ range({\bf A}) = \left[{\bf u_1},\ldots,{\bf u_r}\right]$
    4. If $ {\bf U_r} = {\bf U}(:,1:r)$, $ {\bf\Sigma_r} = {\bf\Sigma}(1:r,1:r)$ and $ {\bf V_r} = {\bf V}(:,1:r)$, then

      $\displaystyle {\bf A_r} = {\bf U_r}{\bf\Sigma_r}{\bf V_r}^T = \sum_{i=1}^r \sigma_i {\bf u_i}{\bf v_i}^T
$

  3. Show that
    1. $ \Vert{\bf A}\Vert _F^2 = \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_p^2$
    2. $ \Vert{\bf A}\Vert _2^2 = \sigma_1$
  4. Let the SVD of $ {\bf A}$ be as above. If $ k < r = rank({\bf A})$ and

    $\displaystyle {\bf A_k} = \sum_{i=1}^k \sigma_i {\bf u_i}{\bf v_i}^T
$

    then show that

    $\displaystyle \min_{rank({\bf B} = k)} \Vert{\bf A} - {\bf B}\Vert _2^2 = \Vert{\bf A} - {\bf A_k}\Vert _2^2 = \sigma_1
$

  5. Show (without using condition numbers) that if $ {\bf A}$ is square ( $ n \times n$) and $ \sigma_n > 0$ is small, then solving $ {\bf x} = $A $ ^{-1}{\bf b}$ is unstable.
  6. Show that in the $ \Vert\;\Vert _2$ norm

    $\displaystyle cond({\bf A}) = \frac{\sigma_1}{\sigma_n}
$



Subhashis Banerjee 2005-10-03