## CS130N Problem set 7: Basic graph traversal

April 24, 2001

1. Describe the details of an $O(n+m)$ time algorithm for computing all connected components of an undirected Graph $G$ with $m$ vertices and $n$ edges.
2. Let $T$ be a spanning tree produced by the DFS of a connected undirected graph $G$. Argue why every edge of $G$, not in $T$, goes from a vertex $v$ in $T$ to one of its ancestors, that is, it is a back edge.
3. Show that, if $T$ is a BFS tree produced for a connected graph $G$, then, for each vertex $v$ at level $i$, the path of $T$ between $s$ and $v$ has $i$ edges, and any other path of $G$ between $s$ and $v$ has at least $i$ edges.
4. Given a tree $T$ of $n$ nodes the diameter of $T$ is the length of a longest path between two nodes of $T$. Give an efficient algorithm to compute the diameter of $T$.
5. An independent set of an undirected graph $G=(V, E)$ is a subset $I$ of $V$ such that no two vertices in $I$ are adjacent. That is, if $u, v \in I$ then $(u, v) \notin E$. A maximal independent set $M$ is an independent set such that, if we were to add any additional vertex to $M$, then it would not be independent any more. Prove that every graph has a maximal independent set. Give an efficient algorithm to compute the maximal independent set of a given graph $G$.
6. An Euler tour of a directed graph $G$ with $n$ vertices and $m$ edges is a cycle that traverses each edge of $G$ exactly once according to its direction. Such a tour always exists if the in-degree equals the outdegree for every vertex in $G$. Describe an $O(n+m)$ time algorithm for finding a Euler tour of such a graph $G$.
7. Let $G$ be an undirected graph with $n$ vertices and $m$ edges. Describe an $O(n+m)$ time algorithm for traversing each edge of $G$ exactly once in each direction.
8. A node $p$ of a directed graph $G=(V, E)$ is called a $\operatorname{sink}$ if for every node $v \in V, v \neq p$ the edge $(v, p)$ exists, whereas the edge $(p, v)$ does not exist. Describe an algorithm that can detect the presence of a sink in $G$ in $O(n)$ time ( $n$ is the number of vertices). Your algorithm should accept the graph represented by its adjacency matrix. (Notice that the running time $O(n)$ for this problem is remarkable given that the instance takes a space in $\Omega\left(n^{2}\right)$ merely to write down).
