CS130N Problem set 2: Asymptotic orders of growth

January 22, 2001

- 1. Let f(n) and g(n) be asymptotically non-negative functions. Show that $max(f(n), g(n)) = \Theta(f(n) + g(n))$.
- 2. Show that for any real constants a and b, b > 0,

$$(n+a)^b = \Theta(n^b)$$

- 3. Explain why the statement, "The running time of insertion sort is at least $O(n^2)$," is content-free.
- 4. What do we mean in each of the following?
 - (a) $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
 - (b) $T(n) = 2T(n/2) + \Theta(n)$ (why is it acceptable not to write the base case for this recurrence?)
 - (c) $\sum_{i=1}^{n} O(i)$
 - (d) $2n^2 + \Theta(n) = \Theta(n^2)$
- 5. Consider the recurrence T(1) = 1, T(n) = 2T(n/2) + n. What is wrong in the following proof by induction that T(n) = O(n)?

We prove $T(n) \leq cn$. We obviously have the base case. Now,

$$T(n) \leq 2(cn/2) + n \text{ by I.H.}$$

= $cn + n$
= $O(n)$

- 6. Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?
- 7. Show that $O(2^{\log_a(n)})$ is **not** the same as $O(2^{\log_b(n)})$, unless a = b of course.

- 8. Show that $\log(n!) = \Theta(n \log n)$.
- 9. For which of the following functions is it true that f(2n) = O(f(n))?
 - (a) f(n) = n
 - (b) $f(n) = n^4$
 - (c) $f(n) = 2^n$
 - (d) $f(n) = \log n$
 - (e) $f(n) = n \log n$
- 10. In a certain population of amoebae, there are "active" amoebae and "passive" amoebae. Every minute, each active amoebae is turned into 3 active amoebae and 7 new passive ones. All the old passive amoebae remain unchanged. Starting with a single active amoeba, how many amoebae will there be after n minutes? Show that this is $\Theta(3^n)$.
- 11. Use the fact that $\frac{d}{dx} \log \log x = \frac{1}{x \log x}$ to show that $\sum_{k=0}^{n} \frac{1}{k \log k} = O\left(\log \log n\right).$
- 12. Prove or disprove:
 - (a) $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$.
 - (b) f(n) = O(g(n)) and g(n) = O(h(n)) implies f(n) = O(h(n)).
 - (c) $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ implies $f(n) = \Omega(h(n))$.
 - (d) f(n) = O(g(n)) implies g(n) = O(f(n)).
 - (e) f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$.
 - (f) f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.
 - (g) f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.
 - (h) $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$
- 13. Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Show that T(n) can be bounded asymptotically as follows:

- (a) If $f(n) = O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (b) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$
- (c) If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, the $T(n) = \Theta(f(n))$.

[Note: The above is called the **master theorem**. The tutors may discuss some applications.]