CS130N Problem set 2: Asymptotic orders of growth

January 22, 2001

1. Let $f(n)$ and $g(n)$ be asymptotically non-negative functions. Show that $\max (f(n), g(n))=\Theta(f(n)+g(n))$.
2. Show that for any real constants a and $b, b>0$,

$$
(n+a)^{b}=\Theta\left(n^{b}\right)
$$

3. Explain why the statement, "The running time of insertion sort is at least $O\left(n^{2}\right)$," is content-free.
4. What do we mean in each of the following?
(a) $2 n^{2}+3 n+1=2 n^{2}+\Theta(n)$
(b) $T(n)=2 T(n / 2)+\Theta(n)$ (why is it acceptable not to write the base case for this recurrence?)
(c) $\sum_{i=1}^{n} O(i)$
(d) $2 n^{2}+\Theta(n)=\Theta\left(n^{2}\right)$
5. Consider the recurrence $T(1)=1, T(n)=2 T(n / 2)+n$. What is wrong in the following proof by induction that $T(n)=O(n)$?

We prove $T(n) \leq c n$. We obviously have the base case. Now,

$$
\begin{aligned}
T(n) & \leq 2(c n / 2)+n \quad \text { by I.H. } \\
& =c n+n \\
& =O(n)
\end{aligned}
$$

6. Is $2^{n+1}=O\left(2^{n}\right)$? Is $2^{2 n}=O\left(2^{n}\right)$?
7. Show that $O\left(2^{\log _{a}(n)}\right)$ is not the same as $O\left(2^{\log _{b}(n)}\right)$, unless $a=b$ of course.
8. Show that $\log (n!)=\Theta(n \log n)$.
9. For which of the following functions is it true that $f(2 n)=O(f(n))$?
(a) $f(n)=n$
(b) $f(n)=n^{4}$
(c) $f(n)=2^{n}$
(d) $f(n)=\log n$
(e) $f(n)=n \log n$
10. In a certain population of amoebae, there are "active" amoebae and "passive" amoebae. Every minute, each active amoebae is turned into 3 active amoebae and 7 new passive ones. All the old passive amoebae remain unchanged. Starting with a single active amoeba, how many amoebae will there be after n minutes? Show that this is $\Theta\left(3^{n}\right)$.
11. Use the fact that $\frac{d}{d x} \log \log x=\frac{1}{x \log x}$ to show that

$$
\sum_{k=2}^{n} \frac{1}{k \log k}=O(\log \log n)
$$

12. Prove or disprove:
(a) $f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$ implies $f(n)=\Theta(h(n))$.
(b) $f(n)=O(g(n))$ and $g(n)=O(h(n))$ implies $f(n)=O(h(n))$.
(c) $f(n)=\Omega(g(n))$ and $g(n)=\Omega(h(n))$ implies $f(n)=\Omega(h(n))$.
(d) $f(n)=O(g(n))$ implies $g(n)=O(f(n))$.
(e) $f(n)=O(g(n))$ iff $g(n)=\Omega(f(n))$.
(f) $f(n)=O(g(n))$ implies $g(n)=\Omega(f(n))$.
(g) $f(n)=O(g(n))$ implies $2^{f(n)}=O\left(2^{g(n)}\right)$.
(h) $f(n)=\Theta(g(n))$ iff $g(n)=\Theta(f(n))$
13. Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on nonnegative integers by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

where we interpret n / b to mean either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Show that $T(n)$ can be bounded asymptotically as follows:
(a) If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
(b) If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$
(c) If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some $c<1$ and all sufficiently large n, the $T(n)=\Theta(f(n))$.
[Note: The above is called the master theorem. The tutors may discuss some applications.]

