
Introduction to Standard MLRobert Harper1School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3891Copyright c
 1986-1993 Robert Harper.All rights reserved.
1With exercises by Kevin Mitchell, Edinburgh University, Edinburgh, UK.

Contents1 Introduction 12 The Core Language 32.1 Interacting with ML : 32.2 Basic expressions, values, and types : : : : : : : : : : : : : : : 42.2.1 Unit : 52.2.2 Booleans : 52.2.3 Integers : 62.2.4 Strings : 72.2.5 Real Numbers : 72.2.6 Tuples : 82.2.7 Lists : 92.2.8 Records : 112.3 Identi�ers, bindings, and declarations : : : : : : : : : : : : : : 122.4 Patterns : 162.5 De�ning functions : 212.6 Polymorphism and Overloading : : : : : : : : : : : : : : : : : 332.7 De�ning types : 362.8 Exceptions : 432.9 Imperative features : 483 The Modules System 513.1 Overview : 513.2 Structures and Signatures : 533.3 Abstractions : 703.4 Functors : 743.5 The modules system in practice : : : : : : : : : : : : : : : : : 77iii

iv CONTENTS4 Input-Output 84A Answers 88

AcknowledgementsSeveral of the examples were cribbed from Luca Cardelli's introduction to hisdialect of ML [3], from Robin Milner's core language de�nition [5], from DaveMacQueen's modules paper [6], and from Abelson and Sussman's book [1].Joachim Parrow, Don Sannella, and David Walker made many helpful sug-gestions.

vii

Chapter 1IntroductionThese notes are an introduction to the Standard ML programming language.Here are some of the highlights of Standard ML:� ML is a functional programming language. Functions are �rst-classdata objects: they may be passed as arguments, returned as results,and stored in variables. The principal control mechanism in ML isrecursive function application.� ML is an interactive language. Every phrase read is analyzed, compiled,and executed, and the value of the phrase is reported, together with itstype.� ML is strongly typed. Every legal expression has a type which is deter-mined automatically by the compiler. Strong typing guarantees thatno program can incur a type error at run time, a common source ofbugs.� ML has a polymorphic type system. Each legal phrase has a uniquely-determined most general typing that determines the set of contexts inwhich that phrase may be legally used.� ML supports abstract types. Abstract types are a useful mechanism forprogram modularization. New types together with a set of functions onobjects of that type may be de�ned. The details of the implementationare hidden from the user of the type, achieving a degree of isolationthat is crucial to program maintenance.1

2 CHAPTER 1. INTRODUCTION� ML is statically scoped. ML resolves identi�er references at compiletime, leading to more modular and more e�cient programs.� ML has a type-safe exception mechanism. Exceptions are a usefulmeans of handling unusual or deviant conditions arising at run-time.� ML has a modules facility to support the incremental construction oflarge programs. An ML program is constructed as an interdependentcollection of structures which are glued together using functors. Sepa-rate compilation is supported through the ability to export and importfunctors.Standard ML is the newest member of a family of languages tracing itsorigins to the ML language developed at Edinburgh by Mike Gordon, RobinMilner, and Chris Wadsworth in the mid-seventies [4]. Since then numerousdialects and implementations have arisen, both at Edinburgh and elsewhere.Standard ML is a synthesis of many of the ideas that were explored in thevariant languages, notably Luca Cardelli's dialect [3], and in the functionallanguage HOPE developed by Rod Burstall, Dave MacQueen, and Don San-nella [2]. The most recent addition to the language is the modules systemdeveloped by Dave MacQueen [6].These notes are intended as an informal introduction to the language andits use, and should not be regarded as a de�nitive description of StandardML. They have evolved over a number of years, and are in need of revisionboth to re
ect changes in the language, and the experience gained with itsince its inception. Comments and suggestions from readers are welcome.The de�nition of Standard ML is available from MIT Press [7]. A lessformal, but in many ways obsolete, account is available as an EdinburghUniversity technical report [5]. The reader is encouraged to consult thede�nition for precise details about the language.

Chapter 2The Core Language2.1 Interacting with MLMost implementations of ML are interactive, with the basic form of interac-tion being the \read-eval-print" dialogue (familiar to LISP users) in whichan expression is entered, ML analyzes, compiles, and executes it, and theresult is printed on the terminal.1Here is a sample interaction:- 3+2;> 5 : intML prompts with \- ," and precedes its output with \> ." The user enteredthe phrase \3+2". ML evaluated this expression and printed the value, \5",of the phrase, together with its type, \int".Various sorts of errors can arise during an interaction with ML. Mostof these fall into three categories: syntax errors, type errors, and run-timefaults. You are probably familiar with syntax errors and run-time errors fromyour experience with other programming languages. Here is an example ofwhat happens when you enter a syntactically incorrect phrase:- let x=3 in x end;Parse error: Was expecting "in" in ... let <?> x ...1The details of the interaction with the ML top level vary from one implementation toanother, but the overall \feel" is similar in all systems known to the author. These noteswere prepared using the Edinburgh compiler, circa 1988.3

4 CHAPTER 2. THE CORE LANGUAGERun-time errors (such as dividing by zero) are a form of exception, aboutwhich we shall have more to say below. For now, we simply illustrate thesort of output that you can expect from a run-time error:- 3 div 0;Failure: DivThe notion of a type error is somewhat more unusual. We shall havemore to say about types and type errors later. For now, it su�ces to remarkthat a type error arises from the improper use of a value, such as trying toadd 3 to true:- 3+true;Type clash in: 3+trueLooking for a: intI have found a: boolOne particularly irksome form of error that ML cannot diagnose is thein�nite loop. If you suspect that your program is looping, then it is often pos-sible to break the loop by typing the interrupt character (typically Control-C). ML will respond with a message indicating that the exception interrupthas been raised, and return to the top level. Some implementations have adebugging facility that may be helpful in diagnosing the problem.Other forms of errors do arise, but they are relatively less common, andare often di�cult to explain outside of context. If you do get an error messagethat you cannot understand, then try to �nd someone with more experiencewith ML to help you.The details of the user interface vary from one implementation to another,particularly with regard to output format and error messages. The examplesthat follow are based on the Edinburgh ML compiler; you should have nodi�culty interpreting the output and relating it to that of other compilers.2.2 Basic expressions, values, and typesWe begin our introduction to ML by introducing a set of basic types. In MLa type is a collection of values. For example, the integers form a type, as dothe character strings and the booleans. Given any two types � and � , theset of ordered pairs of values, with the left component a value of type � and

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 5the right a value of type � , is a type. More signi�cantly, the set of functionsmapping one type to another form a type. In addition to these and otherbasic types, ML allows for user-de�ned types. We shall return to this pointlater.Expressions in ML denote values in the same way that numerals denotenumbers. The type of an expression is determined by a set of rules thatguarantee that if the expression has a value, then the value of the expressionis a value of the type assigned to the expression (got that?) For example,every numeral has type int since the value of a numeral is an integer. Weshall illustrate the typing system of ML by example.2.2.1 UnitThe type unit consists of a single value, written (), sometimes pronounced\unit" as well. This type is used whenever an expression has no interestingvalue, or when a function is to have no arguments.2.2.2 BooleansThe type bool consists of the values true and false. The ordinary booleannegation is available as not; the boolean functions andalso and orelse arealso provided as primitive.The conditional expression, if e then e1 else e2, is also consideredhere because its �rst argument, e, must be a boolean. Note that the elseclause is not optional! The reason is that this \if" is a conditional expres-sion, rather than a conditional command, such as in Pascal. If the elseclause were omitted, and the test were false, then the expression would haveno value! Note too that both the then expression and the else expressionmust have the same type. The expressionif true then true else ()is type incorrect, or ill-typed, since the type of the then clause is bool,whereas the type of the else clause is unit.- not true;> false : bool- false andalso true;

6 CHAPTER 2. THE CORE LANGUAGE> false : bool- false orelse true;> true : bool- if false then false else true;> true : bool- if true then false else true;> false : bool2.2.3 IntegersThe type int is the set of (positive and negative) integers. Integers arewritten in the usual way, except that negative integers are written with thetilde character \~" rather than a minus sign.- 75;> 75 : int- ~24;> ~24 : int- (3+2) div 2;> 2 : int- (3+2) mod 2;> 1 : intThe usual arithmetic operators, +, -, *, div, and mod, are available, withdiv and mod being integer division and remainder, respectively. The usualrelational operators, <, <=, >, >=, =, and <>, are provided as well. They eachtake two expressions of type int and return a boolean according to whetheror not the relation holds.- 3<2;> false : bool- 3*2 >= 12 div 6;> true : bool- if 4*5 mod 3 = 1 then 17 else 51;> 51 : intNotice that the relational operators, when applied to two integers, evaluateto either true or false, and therefore have type bool.

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 72.2.4 StringsThe type string consists of the set of �nite sequences of characters. Stringsare written in the conventional fashion as characters between double quotes.The double quote itself is written \n"".- "Fish knuckles";> "Fish knuckles" : string- "\"";> """ : stringSpecial characters may also appear in strings, but we shall have no need ofthem. Consult the ML language de�nition [7] for the details of how to buildsuch strings.The function size returns the length, in characters, of a string, and thefunction ^ is an in�x append function.2- "Rhinocerous " ^ "Party";> "Rhinocerous Party"- size "Walrus whistle";> 14 : int2.2.5 Real NumbersThe type of
oating point numbers is known in ML as real. Real numbersare written in more or less the usual fashion for programming languages: aninteger followed by a decimal point followed by one or more digits, followedby the exponent marker, E, followed by another integer. The exponent partis optional, provided that the decimal point is present, and the decimal partis optional provided that the exponent part is present. These conventionsare needed to distinguish integer constants from real constants (ML does notsupport any form of type inclusion, so an integer must be explicitly coercedto a real.)- 3.14159;> 3.14159 : real2By in�x we mean a function of two arguments that is written between its arguments,just as addition is normally written.

8 CHAPTER 2. THE CORE LANGUAGE- 3E2;> 300.0 : real- 3.14159E2;> 314.159 : realThe usual complement of basic functions on the reals are provided. Thearithmetic functions ~, +, -, and * may be applied to real numbers, thoughone may not mix and match: a real can only be added to a real, and not toan integer. The relational operators =, <>, <, and so on, are also de�ned forthe reals in the usual way. Neither div nor mod are de�ned for the reals, butthe function / denotes ordinary real-valued division. In addition there arefunctions such as sin, sqrt, and exp for the usual mathematical functions.The function real takes an integer to the corresponding real number, andfloor truncates a real to the greatest integer less than it.- 3.0+2.0;> 5.0 : real- (3.0+2.0) = real(3+2);> true : bool- floor(3.2);> 3 : real- floor(~3.2);> ~4 : real- cos(0.0);> 1.0 : real- cos(0);Type clash in: (cos 0)Looking for a: realI have found a: intThis completes the set of atomic types in ML. We now move on to thecompound types, those that are built up from other types.2.2.6 TuplesThe type �*� , where � and � are types, is the type of ordered pairs whose�rst component has type � and whose second component has type � . Orderedpairs are written (e1,e2), where e1 and e2 are expressions. Actually, there's

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 9no need to restrict ourselves to pairs; we can build ordered n-tuples, wheren � 2, by writing n comma-separated expressions between parentheses.- (true, ());> (true,()) : bool * unit- (1, false, 17, "Blubber");> (1,false,17,"Blubber") : int * bool * int * string- (if 3=5 then "Yes" else "No", 14 mod 3);> ("No",2) : string * intEquality between tuples is component-wise equality | two n-tuples areequal if each of their corresponding components are equal. It is a type errorto try to compare two tuples of di�erent types: it makes no sense to askwhether, say (true,7) is equal to ("abc",()), since their correspondingcomponents are of di�erent types.- (14 mod 3, not false) = (1+1, true);> true : bool- ("abc", (5*4) div 2) = ("a"^"bc", 11);> false : bool- (true, 7) = ("abc", ());Type clash in: (true,7)=("abc",())Looking for a: bool*intI have found a: string*unit2.2.7 ListsThe type � list consists of �nite sequences, or lists, of values of type � . Forinstance, the type int list consists of lists of integers, and the type boollist list consists of lists of lists of booleans. There are two notations forlists, the basic one and a convenient abbreviation. The �rst is based on thefollowing characterization of lists: a � list is either empty, or it consists ofa value of type � followed by a � list. This characterization is re
ected in thefollowing notation for lists: the empty list is written nil and a non-emptylist is written e::l, where e is an expression of some type � and l is some� list. The operator :: is pronounced \cons", after the LISP list-formingfunction by that name.If you think about this de�nition for a while, you'll see that every non-empty list can be written in this form:

10 CHAPTER 2. THE CORE LANGUAGEe1::e2::� � �::en::nilwhere each ei is an expression of some type � , and n � 1. This accords withthe intuitive meaning of a list of values of a given type. The role of nil is toserve as the terminator for a list | every list has the form illustrated above.This method of de�ning a type is called a recursive type de�nition. Suchde�nitions characteristically have one or more base cases, or starting points,and one or more recursion cases. For lists, the base case is the empty list,nil, and the recursion case is cons, which takes a list and some other valueand yields another list. Recursively-de�ned types occupy a central positionin functional programming because the organization of a functional programis determined by the structure of the data objects on which it computes.Here are some examples of using nil and :: to build lists:- nil;> [] : 'a list- 3 :: 4 :: nil;> [3,4] : int list- (3 :: nil) :: (4 :: 5 :: nil) :: nil;> [[3],[4,5]] : int list list- ["This", "is", "it"];> ["This","is","it"] : string listNotice that ML prints lists in a compressed format as a comma-separatedlist of the elements of the list between square brackets. This format is con-venient for input as well, and you may use it freely. But always keep in mindthat it is an abbreviation | the nil and :: format is the primary one.The type of nil (see the example in Section 2) is peculiar because itinvolves a type variable, printed as 'a, and pronounced \alpha". The reasonfor this is that there is nothing about an empty list that makes it a list ofintegers or a list of booleans, or any type of list at all. It would be silly torequire that there be a distinct constant denoting the empty list for each typeof list, and so ML treats nil as a polymorphic object, one that can inhabita variety of structurally-related types. The constant nil is considered to bean int list or a bool list or a int list list, according to the context.Note however that nil inhabits only list types. This is expressed by assigningthe type 'a list to nil, where 'a is a variable ranging over the collectionof types. An instance of a type involving a type variable (called a polytype,

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 11for short) is obtained by replacing all occurrences of a given type variable bysome type (perhaps another polytype). For example, 'a list has int listand (int * 'b) list as instances. A type that does not involve any typevariables is called a monotype.Equality on lists is item-by-item: two lists are equal if they have the samelength, and corresponding components are equal. As with tuples, it makesno sense to compare two lists with di�erent types of elements, and so anyattempt to do so is considered a type error.- [1,2,3] = 1::2::3::nil;> true : bool- [[1], [2,4]] = [[2 div 2], [1+1, 9 div 3]];> false : bool2.2.8 RecordsThe last compound type that we shall consider in this section is the recordtype. Records are quite similar to Pascal records and to C structures (and tosimilar features in other programming languages). A record consists of a �niteset of labelled �elds, each with a value of any type (as with tuples, di�erent�elds may have di�erent types). Record values are written by giving a set ofequations of the form l = e, where l is a label and e is an expression, enclosedin curly braces. The equation l = e sets the value of the �eld labelled l to thevalue of e. The type of such a value is a set of pairs of the form l : t wherel is a label and � is a type, also enclosed in curly braces. The order of theequations and typings is completely immaterial| components of a record areidenti�ed by their label, rather than their position. Equality is component-wise: two records are equal if their corresponding �elds (determined by label)are equal.- {name="Foo",used=true};> {name="Foo", used=true} : {name:string, used:bool}- {name="Foo",used=true} = {used=not false,name="Foo"};> true : bool- {name="Bar",used=true} = {name="Foo",used=true};> false : boolTuples are special cases of records. The tuple type � * � is actuallyshort-hand for the record type f 1 : �, 2 : � g with two �elds labeled

12 CHAPTER 2. THE CORE LANGUAGE\1" and \2". Thus the expressions (3,4) and f1=3,2=4g have precisely thesame meaning.This completes our introduction to the basic expressions, values, andtypes in ML. It is important to note the regularity in the ways of formingvalues of the various types. For each type there are basic expression formsfor denoting values of that type. For the atomic types, these expressionsare the constants of that type. For example, the constants of type int arethe numerals, and the constants of type string are the character strings,enclosed in double quotes. For the compound types, values are built usingvalue constructors, or just constructors, whose job is to build a member ofa compound type out of the component values. For example, the pairingconstructor, written (,), takes two values and builds a member of a tupletype. Similarly, nil and :: are constructors that build members of the listtype, as do the square brackets. The record syntax can also be viewed as a(syntactically elaborate) constructor for record types. This view of data asbeing built up from constants by constructors is one of the fundamental prin-ciples underlying ML and will play a crucial role in much of the developmentbelow.There is one more very important type in ML, the function type. Beforewe get to the function type, it is convenient to take a detour through thedeclaration forms of ML, and some of the basic forms of expressions. Withthat under our belt, we can more easily discuss functions and their types.2.3 Identi�ers, bindings, and declarationsIn this section we introduce declarations, the means of introducing identi�ersin ML. All identi�ers must be declared before they are used (the names ofthe built-in functions such as + and size are pre-declared by the compiler).Identi�ers may be used in several di�erent ways in ML, and so there is adeclaration form for each such use. In this section we will concern ourselveswith value identi�ers, or variables. A variable is introduced by binding it toa value as follows:- val x = 4*5;> val x = 20 : int- val s = "Abc" ^ "def";> val s = "Abcdef" : string

2.3. IDENTIFIERS, BINDINGS, AND DECLARATIONS 13- val pair = (x, s);> val pair = (20,"Abcdef") : int * stringThe phrase val x = 4*5 is called a value binding. To evaluate a valuebinding, ML evaluates the right-hand side of the equation and sets the valueof the variable on the left-hand side to this value. In the above example, xis bound to 20, an integer. Thereafter, the identi�er x always stands for theinteger 20, as can be seen from the third line above: the value of (x, s)is obtained from the values of x and s.Notice that the output from ML is slightly di�erent than in our examplesabove in that it prints \x = " before the value. The reason for that is thatwhenever an identi�er is declared, ML prints its de�nition (the form of thede�nition depends on the sort of identi�er; for now, we have only variables,for which the de�nition is the value of the variable). An expression e typedat the top level (in response to ML's prompt) is evaluated, and the valueof e is printed, along with its type. ML implicitly binds this value to theidenti�er it so that it can be conveniently referred to in the next top-levelphrase.It is important to emphasize the distinction between ML's notion of avariable and that of most other programming languages. ML's variablesare more like the const declarations than var declarations of Pascal; inparticular, binding is not assignment. When an identi�er is declared by avalue binding, a new identi�er is \created" | it has nothing whatever todo with any previously declared identi�er of the same name. Furthermore,once an identi�er is bound to a value, there is no way to change that value:its value is whatever we have bound to it when it was declared. If you areunfamiliar with functional programming, then this will seem rather odd, atleast until we discuss some sample programs and show how this is used.Since identi�ers may be rebound, some convention about which bindingto use must be provided. Consider the following sequence of bindings.- val x = 17;> val x = 17 : int- val y = x;> val y = 17 : int- val x = true;> val x = true : bool- val z = x;

14 CHAPTER 2. THE CORE LANGUAGE> val z = true : boolThe second binding for x hides the previous binding, and does not a�ectthe value of y. Whenever an identi�er is used in an expression, it refers tothe closest textually enclosing value binding for that identi�er. Thus theoccurrence of x in the right-hand side of the value binding for z refers tothe second binding of x, and hence has value true, not 17. This rule is nodi�erent than that used in other block-structured languages, but it is worthemphasizing that it is the same.Multiple identi�ers may be bound simultaneously, using the keyword\and" as a separator:- val x = 17;> val x = 17 : int- val x = true and y = x;> val x = true : boolval y = 17 : intNotice that y receives the value 17, not true! Multiple value bindings joinedby and are evaluated in parallel | �rst all of the right-hand sides are evalu-ated, then the resulting values are all bound to their corresponding left-handsides.In order to facilitate the following explanation, we need to introduce someterminology. We said that the role of a declaration is to de�ne an identi�erfor use in a program. There are several ways in which an identi�er can beused, one of which is as a variable. To declare an identi�er for a particularuse, one uses the binding form associated with that use. For instance, todeclare an identi�er as a variable, one uses a value binding (which bindsa value to the variable and establishes its type). Other binding forms willbe introduced later on. In general, the role of a declaration is to build anenvironment, which keeps track of the meaning of the identi�ers that havebeen declared. For instance, after the value bindings above are processed,the environment records the fact that the value of x is true and that thevalue of y is 17. Evaluation of expressions is performed with respect to thisenvironment, so that the value of the expression x can be determined to betrue.Just as expressions can be combined to form other expressions by usingfunctions like addition and pairing, so too can declarations be combined with

2.3. IDENTIFIERS, BINDINGS, AND DECLARATIONS 15other declarations. The result of a compound declaration is an environmentdetermined from the environments produced by the component declarations.The �rst combining form for declarations is one that we've already seen: thesemicolon for sequential composition of environments.3- val x = 17 ; val x = true and y = x;> val x = 17 : int> val x = true : boolval y = 17 : intWhen two declarations are combined with semicolon, ML �rst evaluates theleft-hand declaration, producing an environment E, and then evaluates theright-hand declaration (with respect to E), producing environment E0. Thesecond declaration may hide the identi�ers declared in the �rst, as indicatedabove.It is also useful to be able to have local declarations whose role is toassist in the construction of some other declarations. This is accomplishedas follows:- localval x = 10inval u = x*x + x*xval v = 2*x + (x div 5)end;> val u = 200 : intval v = 22 : intThe binding for x is local to the bindings for u and v, in the sense that x isavailable during the evaluation of the bindings for u and v, but not thereafter.This is re
ected in the result of the declaration: only u and v are declared.It is also possible to localize a declaration to an expression using let:- letval x = 10in3The semicolon is syntactically optional: two sequential bindings are considered to beseparated by a semicolon.

16 CHAPTER 2. THE CORE LANGUAGEx*x + 2*x + 1end;- 121 : intThe declaration of x is local to the expression occurring after the in, and isnot visible from the outside. The body of the let is evaluated with respectto the environment built by the declaration occurring before the in. Inthis example, the declaration binds x to the value 10. With respect to thisenvironment, the value of x*x+2*x+1 is 121, and this is the value of the wholeexpression.Exercise 2.3.1 What is the result printed by the ML system in response tothe following declarations? Assume that there are no initial bindings for x,y or z.1. val x = 2 and y = x+1;2. val x = 1; local val x = 2 in val y = x+1 end; val z = x+1;3. let val x = 1 in let val x = 2 and y = x in x + y end end;2.4 PatternsYou may have noticed that there is no means of obtaining, say, the �rst com-ponent of a tuple, given only the expressions de�ned so far. Compound valuesare decomposed via pattern matching. Values of compound types are them-selves compound, built up from their component values by the use of valueconstructors. It is natural to use this structure to guide the decompositionof compound values into their component parts.Suppose that x has type int*bool. Then x must be some pair, with theleft component an integer and the right component a boolean. We can obtainthe value of the left and right components using the following generalizationof a value binding.- val x = (17, true);> val x = (17,true) : int*bool- val (left, right) = x;> val left = 17 : intval right = true : bool

2.4. PATTERNS 17The left-hand side of the second value binding is a pattern, which is built upfrom variables and constants using value constructors. That is, a pattern isjust an expression, possibly involving variables. The di�erence is that thevariables in a pattern are not references to previously-bound variables, butrather variables that are about to be bound by pattern-matching. In theabove example, left and right are two new value identi�ers that becomebound by the value binding. The pattern matching process proceeds bytraversing the value of x in parallel with the pattern, matching correspondingcomponents. A variable matches any value, and that value is bound to thatidenti�er. Otherwise (i.e., when the pattern is a constant) the pattern andthe value must be identical. In the above example, since x is an ordered pair,the pattern match succeeds by assigning the left component of x to left,and the right component to right.Notice that the simplest case of a pattern is a variable. This is the formof value binding that we introduced in the previous section.It does not make sense to pattern match, say, an integer against an or-dered pair, nor a list against a record. Any such attempt results in a typeerror at compile time. However, it is also possible for pattern matching tofail at run time:- val x=(false,17);> val x = (false,17) : bool*int- val (false,w) = x;> val w = 17 : int- val (true,w) = x;Failure: matchNotice that in the second and third value bindings, the pattern has a con-stant in the left component of the pair. Only a pair with this value as leftcomponent can match this pattern successfully. In the case of the secondbinding, x in fact has false as left component, and therefore the match suc-ceeds, binding 17 to w. But in the third binding, the match fails becausetrue does not match false. The message Failure: match indicates thata run-time matching failure has occurred.Pattern matching may be performed against values of any of the typesthat we have introduced so far. For example, we can get at the componentsof a three element list as follows:

18 CHAPTER 2. THE CORE LANGUAGE- val l = ["Lo", "and", "behold"];> val l = ["Lo","and","behold"] : string list- val [x1,x2,x3] = l;> val x1 = "Lo" : stringval x2 = "and" : stringval x3 = "behold" : stringThis works �ne as long as we know the length of l in advance. Butwhat if l can be any non-empty list? Clearly we cannot hope to write asingle pattern to bind all of the components of l, but we can decompose lin accordance with the inductive de�nition of a list as follows:- val l = ["Lo", "and", "behold"];> val l = ["Lo","and","behold"] : string list- val hd::tl = l;> val hd = "Lo" : stringval tl = ["and","behold"] : string listHere hd is bound to the �rst element of the list l (called the head of l), andtl is bound to the list resulting from deleting the �rst element (called thetail of the list). The type of hd is string and the type of tl is string list.The reason is that :: constructs lists out of a component (the left argument)and another list.Exercise 2.4.1 What would happen if we wrote val [hd,tl] = l; insteadof the above. (Hint: expand the abbreviated notation into its true form, thenmatch the result against l).Suppose that all we are interested in is the head of a list, and are notinterested in its tail. Then it is inconvenient to have to make up a namefor the tail, only to be ignored. In order to accommodate this \don't care"case, ML has a wildcard pattern that matches any value whatsoever, withoutcreating a binding.- val l = ["Lo", "and", "behold"];> val l = ["Lo","and","behold"] : string list- val hd::_ = l;> val hd = "Lo" : string

2.4. PATTERNS 19Pattern matching may also be performed against records, and, as youmay have guessed, it is done on the basis of labelled �elds. An example willillustrate record pattern matching:- val r = { name="Foo", used=true };> val r = {name="Foo",used=true} : {name:string,used:bool}- val { used=u, name=n } = r;> val n = "Foo" : stringval u = true : boolIt is sometimes convenient to be able to match against a partial recordpattern. This can be done using the record wildcard, as the following exampleillustrates:- val { used=u, ... } = r ;> val u = true : boolThere is an important restriction on the use of record wildcards: it must bepossible to determine at compile time the type of the entire record pattern(i.e., all the �elds and their types must be inferrable from the context of thematch).Since single-�eld selection is such a common operation, ML provides ashort-hand notation for it: the name �eld of rmay be designated by the appli-cation #namer. Actually, #name is bound to the function fn fname=n,...g=> n, which selects the name �eld from a record, and thus it must be pos-sible to determine from context the entire record type whenever a selectionfunction is used. In particular, fn x => #name x will be rejected since thefull record type of x is not �xed by the context of occurrence. You will recallthat n-tuples are special forms of records whose labels are natural numbers isuch that 1 � i � n. The ith component of a tuple may therefore be selectedusing the function #i.Patterns need not be
at, in the following sense:- val x = (("foo", true), 17) ;> val x = (("foo",true),17) : (string*bool)*int- val ((ll,lr),r) = x ;> val ll = "foo" : stringval lr = true : boolval r = 17 : int

20 CHAPTER 2. THE CORE LANGUAGESometimes it is desirable to bind \intermediate" pattern variables. Forinstance, we may want to bind the pair (ll,lr) to an identi�er l so thatwe can refer to it easily. This is accomplished by using a layered pattern. Alayered pattern is built by attaching a pattern to a variable within anotherpattern as follows:- val x = (("foo", true), 17);> val x = (("foo",true),17) : (string*bool)*int- val (l as (ll,lr), r) = x;> val l = ("foo",true) : string*boolval ll = "foo" : stringval lr = true : boolval r = 17 : intPattern matching proceeds as before, binding l and r to the left and rightcomponents of x, but in addition the binding of l is further matched againstthe pattern (ll,lr), binding ll and lr to the left and right components ofl. The results are printed as usual.Before you get too carried away with pattern matching, you should real-ize that there is one signi�cant limitation: patterns must be linear: a givenpattern variable may occur only once in a pattern. This precludes the possi-bility of writing a pattern (x,x) which matches only symmetric pairs, thosefor which the left and right components have the same value. This restrictioncauses no di�culties in practice, but it is worth pointing out that there arelimitations.Exercise 2.4.2 Bind the variable x to the value 0 by constructing patternsto match against the following expressions.For example, given the expression (true,"hello",0), the required patternis (, ,x).1. { a=1, b=0, c=true }2. [~2, ~1, 0, 1, 2]3. [(1,2), (0,1)]

2.5. DEFINING FUNCTIONS 212.5 De�ning functionsSo far we have been using some of the pre-de�ned functions of ML, suchas the arithmetic functions and the relational operations. In this section weintroduce function bindings, the means by which functions are de�ned in ML.We begin with some general points about functions in ML. Functions areused by applying them to an argument. Syntactically, this is indicated bywriting two expressions next to one another, as in size "abc" to invoke thefunction size with argument "abc". All functions take a single argument;multiple arguments are passed by using tuples. So if, for example, therewere a function append which takes two lists as arguments, and returns alist, then an application of append would have the form append(l1,l2): ithas single argument which is an ordered pair (l1,l2). There is a specialsyntax for some functions (usually just the built-in's) that take a pair asargument, called in�x application, in which the function is placed betweenthe two arguments. For example, the expression e1 + e2 really means \applythe function + to the pair (e1,e2). It is possible for user-de�ned functionsto be in�x, but we shall not go into that here.Function application can take a syntactically more complex form in MLthan in many common programming languages. The reason is that in mostof the common languages, functions can be designated only by an identifer,and so function application always has the form f(e1; . . . ; en), where f is anidenti�er. ML has no such restriction. Functions are perfectly good values,and so may be designated by arbitrarily complex expressions. Therefore thegeneral form of an application is e e0, which is evaluated by �rst evaluating e,obtaining some function f , then evaluating e0, obtaining some value v, andapplying f to v. In the simple case that e is an identi�er, such as size, thenthe evaluation of e is quite simple | simply retrieve the value of size, whichhad better be a function. But in general, e can be quite complex and requireany amount of computation before returning a function as value. Noticethat this rule for evaluation of function application uses the call-by-valueparameter passing mechanism since the argument to a function is evaluatedbefore the function is applied.How can we guarantee that in an application e e0, e will in fact evaluateto a function and not, say, a boolean? The answer, of course, is in thetype of e. Functions are values, and all values in ML are divided up intotypes. A function type is a compound type that has functions as members.

22 CHAPTER 2. THE CORE LANGUAGEA function type has the form �->�, pronounced \� to � ," where � and �are types. An expression of this type has as value a function that wheneverit is applied to a value of type �, returns a value of type � , provided thatit terminates (unfortunately, there is no practical means of ensuring that allfunctions terminate for all arguments). The type � is called the domain typeof the function, and � is called its range type. An application e e0 is legalonly if e has type �->� and e0 has type �, that is, only if the type of theargument matches the domain type of the function. The type of the wholeexpression is then � , which follows from the de�nition of the type �->� .For example,- size;size = fn : string -> int- not;not = fn : bool -> bool- not 3;Type clash in: not 3Looking for a: boolI have found a: intThe type of size indicates that it takes a string as argument and returnsan integer, just as we might expect. Similarly, not is a function that takes aboolean and returns a boolean. Functions have no visible structure, and soprint as \fn". The application of not to 3 fails because the domain type ofnot is bool, whereas the type of 3 is int.Since functions are values, we can bind them to identi�ers using the valuebinding mechanism introduced in the last section. For example,- val len = size;> val len = fn : string -> int- len "abc";> 3 : intThe identi�er size is bound to some (internally-de�ned) function with typestring->int. The value binding above retrieves the value of size, somefunction, and binds it to the identi�er len. The application len "abc" isprocessed by evaluating len to obtain some function, evaluating "abc" toobtain a string (itself), and applying that function to that string. The result

2.5. DEFINING FUNCTIONS 23is 3 because the function bound to size in ML returns the length of a stringin characters.Functions are complex objects, but they are not built up from otherobjects in the same way that ordered pairs are built from their components.Therefore their structure is not available to the programmer, and patternmatching may not be performed on functions. Furthermore, it is not possibleto test the equality of two functions (due to a strong theoretical result whichsays that this cannot be done, even in principle). Of all the types we haveintroduced so far, every one except the function type has an equality de�nedon values of that type. Any type for which we may test equality of valuesof that type is said to admit equality. No function type admits equality,and every atomic type admits equality. What about the other compoundtypes? Recall that equality of ordered pairs is de�ned \component-wise":two ordered pairs are equal i� their left components are equal and their rightcomponents are equal. Thus the type �*� admits equality i� both � and �admit equality. The same pattern of reasoning is used to determine whetheran arbitrary type admits equality. The rough-and-ready rule is that if thevalues of a type involve functions, then it probably doesn't admit equality(this rule can be deceptive, so once you get more familiar with ML, you areencouraged to look at the o�cial de�nition in the ML report [7]).With these preliminaries out of the way, we can now go on to consideruser-de�ned functions. The syntax is quite similar to that used in otherlanguages. Here are some examples.- fun twice x = 2*x;> val twice = fn : int->int- twice 4;> 8 : int- fun fact x = if x=0 then 1 else x*fact(x-1);> val fact = fn : int->int- fact 5;> 120 : int- fun plus(x,y):int=x+y;> val plus = fn : int*int->int- plus(4,5);> 9 : intFunctions are de�ned using function bindings that are introduced by the

24 CHAPTER 2. THE CORE LANGUAGEkeyword fun. The function name is followed by its parameter, which is apattern. In the �rst two examples the parameter is a simple pattern, con-sisting of a single identi�er; in the third example, the pattern is a pair whoseleft component is x and right component is y. When a user-de�ned functionis applied, the value of the argument is matched against the parameter of thefunction in exactly the same way as for value bindings, and the body of thefunction is evaluated in the resulting environment. For example, in the caseof twice, the argument (which must be an integer, since the type of twiceis int->int) is bound to x and the body of twice, 2*x is evaluated, yieldingthe value 8. For plus the pattern matching is slightly more complex sincethe argument is a pair, but it is no di�erent from the value bindings of theprevious section: the value of the argument is matched against the pattern(x,y), obtaining bindings for x and y. The body is then evaluated in thisenvironment, and the result is determined by the same evaluation rules. The\:int" in the de�nition of plus is called a type constraint; its purpose hereis to disambiguate between integer addition and real addition. We shall havemore to say about this, and related issues, later on.Exercise 2.5.1 De�ne the functions circumference and area to computethese properties of a circle given its radius.Exercise 2.5.2 De�ne a function to compute the absolute value of a realnumber.The de�nition of the function fact illustrates an important point aboutfunction de�nitions in ML: functions de�ned by fun are recursive, in the sensethat the occurrence of fact in the right-hand side of the de�nition of factrefers to the very function being de�ned (as opposed to some other bindingfor fact which may happen to be in the environment). Thus fact \callsitself" in the process of evaluating its body. Notice that on each recursivecall, the argument gets smaller (provided that it was greater than zero tobegin with), and therefore fact will eventually terminate. Non-terminatingde�nitions are certainly possible, and are the bane of the ML novice. For atrivial example, consider the function- fun f(x)=f(x);> val f = fn: 'a->'bAny call to f will loop forever, calling itself over and over.

2.5. DEFINING FUNCTIONS 25Exercise 2.5.3 An alternative syntax for conditional statements might bede�ned byfun new_if(A,B,C) = if A then B else CExplain what goes wrong if the de�nition for fact is altered to use this newde�nition.Now we can go on to de�ne some interesting functions and illustratehow real programs are written in ML. Recursion is the key to functionalprogramming, so if you're not very comfortable with it, you're advised to goslowly and practice evaluating recursive functions like fact by hand.So far we have de�ned functions with patterns consisting only of a singlevariable, or an ordered pair of variables. Consider what happens if we at-tempt to de�ne a function on lists, say is nil which determines whether ornot its argument is the empty list. The list types have two value constructors:nil and ::. A function de�ned on lists must work regardless of whether thelist is empty or not, and so must be de�ned by cases, one case for nil andone case for ::. Here is the de�nition of is nil:- fun is_nil(nil) = true| is_nil(_::_) = false ;> is_nil = fn : 'a list -> bool- is_nil nil ;> true : bool- is_nil [2,3] ;> false : boolThe de�nition of is nil re
ects the structure of lists: it is de�ned by cases,one for nil and one for h::t, separated from one another by a vertical bar.In general if a function is de�ned on a type with more than one valueconstructor, then that function must have one case for each constructor.This guarantees that the function can accept an arbitrary value of that typewithout failure. Functions de�ned in this way are called clausal functionde�nitions because they contain one clause for each form of value of theargument type.Of course, clausal de�nitions are appropriate for recursively-de�ned func-tions as well. Suppose that we wish to de�ne a function append that, giventwo lists, returns the list obtained by tacking the second onto the end of the�rst. Here is a de�nition of such a function:

26 CHAPTER 2. THE CORE LANGUAGE- fun append(nil,l) = l| append(hd::tl,l) = hd :: append(tl,l);> val append = fn : ('a list * 'a list) -> 'a listThere are two cases to consider, one for the empty list and one for a non-empty list, in accordance with the inductive structure of lists. It is trivial toappend a list l to the empty list: the result is just l. For non-empty lists,we can append l to hd::tl by cons'ing hd onto the result of appending l totl.Exercise 2.5.4 Evaluate the expression append([1,2],[3]) by hand to con-vince yourself that this de�nition of append is correct.Exercise 2.5.5 What function does the following de�nition compute?fun r [] = [] | r(h::t) = append(r(t),[h])The type of append is a polytype; that is, it is a type that involves thetype variable 'a. The reason is that append obviously works no matter whatthe type of the elements of the list are | the type variable 'a stands for thetype of the elements of the list, and the type of append ensures that bothlists to be appended have the same type of elements (which is the type of theelements of the resulting list). This is an example of a polymorphic function;it can be applied to a variety of lists, each with a di�erent element type.Here are some examples of the use of append:- append([],[1,2,3]);> [1,2,3] : int list- append([1,2,3],[4,5,6]);> [1,2,3,4,5,6] : int list- append(["Bowl","of"],["soup"]);> ["Bowl", "of", "soup"] : string listNotice that we used append for objects of type int list and of type stringlist.In general ML assigns the most general type that it can to an expression.By \most general", we mean that the type re
ects only the commitmentsthat are made by the internal structure of the expression. For example, inthe de�nition of the function append, the �rst argument is used as the target

2.5. DEFINING FUNCTIONS 27of a pattern match against nil and ::, forcing it to be of some list type.The type of the second argument must be a list of the same type since itis potentially cons'd with an element of the �rst list. These two constraintsimply that the result is a list of the same type as the two arguments, andhence append has type ('a list * 'a list) -> 'a list.Returning to the example above of a function f(x) de�ned to be f(x), wesee that the type is 'a->'b because, aside from being a function, the body off makes no commitment to the type of x, and hence it is assigned the type'a, standing for any type at all. The result type is similarly uncommitted,and so is taken to be 'b, an arbitrary type. You should convince yourselfthat no type error can arise from any use of f, even though it has the verygeneral type 'a->'b.Function bindings are just another form of declaration, analogous to thevalue bindings of the previous section (in fact, function bindings are just aspecial form of value binding). Thus we now have two methods for buildingdeclarations: value bindings and function bindings. This implies that a func-tion may be de�ned anywhere that a value may be declared; in particular,local function de�nitions are possible. Here is the de�nition of an e�cientlist reversal function:- fun reverse l =let fun rev(nil,y) = y| rev(hd::tl,y) = rev(tl,hd::y)in rev(l,nil)end;> val reverse = fn : 'a list -> 'a listThe function rev is a local function binding that may be used only withinthe let. Notice that rev is de�ned by recursion on its �rst argument, andreverse simply calls rev, and hence does not need to decompose its argu-ment l.Functions are not restricted to using parameters and local variables |they may freely refer to variables that are available when the function isde�ned. Consider the following de�nition:- fun pairwith(x,l) =let fun p y = (x,y)

28 CHAPTER 2. THE CORE LANGUAGEin map p lend;> val pairwith = fn : 'a * 'b list -> ('a*'b) list- val l=[1,2,3];> val l = [1,2,3] : int list- pairwith("a",l);> [("a",1),("a",2),("a",3)] : (string * int) listThe local function p has a non-local reference to the identi�er x, the pa-rameter of the function pairwith. The same rule applies here as with othernon-local references: the nearest enclosing binding is used. This is exactlythe same rule that is used in other block structured languages such as Pascal(but di�ers from the one used in most implementations of LISP).Exercise 2.5.6 A \perfect number" is one that is equal to the sum of allits factors (including 1 but not including itself). For example, 6 is a perfectnumber because 6 = 3 + 2 + 1. De�ne the predicate isperfect to test forperfect numbers.It was emphasized above that in ML functions are values; they have thesame rights and privileges as any other value. In particular, this means thatfunctions may be passed as arguments to other functions, and applicationsmay evaluate to functions. Functions that use functions in either of theseways are called higher order functions. The origin of this terminology issomewhat obscure, but the idea is essentially that functions are often takento be more complex data items than, say, integers (which are called \�rstorder" objects). The distinction is not absolute, and we shall not have needto make much of it, though you should be aware of roughly what is meantby the term.First consider the case of a function returning a function as result. Sup-pose that f is such a function. What must its type look like? Let's supposethat it takes a single argument of type � . Then if it is to return a functionas result, say a function of type �->�, then the type of f must be �->(�->�)This re
ects the fact that f takes an object of type � , and returns a functionwhose type is �->�. The result of any such application of f may itself beapplied to a value of type �, resulting in a value of type �. Such a succes-sive application is written f(e1)(e2), or just f e1 e2; this is not the sameas f(e1,e2)! Remember that (e1,e2) is a single object, consisting of an

2.5. DEFINING FUNCTIONS 29ordered pair of values. Writing f e1 e2 means \apply f to e1, obtaininga function, then apply that function to e2". This is why we went to suchtrouble above to explain function application in terms of obtaining a functionvalue and applying it to the value of the argument: functions can be denotedby expressions other than identi�ers.Here are some examples to help clarify this:- fun times (x:int) (y:int) = x*y;> val times = fn : int->(int->int)- val twice = times 2;> val twice = fn : int -> int- twice 4;> 8 : int- times 3 4;> 12 : intThe function times is de�ned to be a function that, when given an integer,returns a function which, when given an integer returns an integer.4 Theidentifer twice is bound to times 2. Since 2 is an object of type int, theresult of applying times to 2 is an object of type int->int, as can be seenby inspecting the type of times. Since twice is a function, it may be appliedto an argument to obtain a value, in this case twice 4 returns 8 (of course!).Finally times is successively applied to 3, then the result is applied to 4,yielding 12. This last application might have been parenthesized to (times3) 4 for clarity.It is also possible for functions to take other functions as arguments.Such functions are often called functionals or operators, but, once again, weshall not concern ourselves terribly much with this terminology. The classicalexample of such a function is the map function which works as follows: maptakes a function and a list as arguments, and returns the list resulting fromapplying the function to each element of the list in turn. Obviously thefunction must have domain type the same as the type of the elements of thelist, but its range type is arbitrary. Here is a de�nition for map:- fun map f nil = nil| map f (hd::tl) = f(hd) :: map f tl ;> val map = fn : ('a->'b) -> ('a list) -> ('b list)4The need for \:int" on x and y will be explained in Section 6 below.

30 CHAPTER 2. THE CORE LANGUAGENotice how the type of map re
ects the correlation between the type of thelist elements and the domain type of the function, and between the rangetype of the function and the result type.Here are some examples of using map:- val l = [1,2,3,4,5];> val l = [1,2,3,4,5] : int list- map twice l;> [2,4,6,8,10] : int list- fun listify x = [x];> val listify = fn : 'a -> 'a list- map listify l;> [[1],[2],[3],[4],[5]] : int list listExercise 2.5.7 De�ne a function powerset that given a set (represented asa list) will return the set of all its subsets.Combining the ability to take functions as values and to return functionsas results, we now de�ne the composition function. It takes two functions asargument, and returns their composition:- fun compose(f,g)(x) = f(g(x));> val compose = fn : ('a->'b * 'c->'a) -> ('c->'b)- val fourtimes = compose(twice,twice);> val fourtimes = fn : int->int- fourtimes 5;> 20 : intLet's walk through this carefully. The function compose takes a pair offunctions as argument and returns a function; this function, when appliedto x returns f(g(x)). Since the result is f(g(x)), the type of x must bethe domain type of g; since f is applied to the result of g(x), the domaintype of f must be the range type of g. Hence we get the type printedabove. The function fourtimes is obtained by applying compose to the pair(twice,twice) of functions. The result is a function that, when applied tox, returns twice(twice(x)); in this case, x is 5, so the result is 20.Now that you've gained some familiarity with ML, you may feel that itis a bit peculiar that declarations and function values are intermixed. So far

2.5. DEFINING FUNCTIONS 31there is no primitive expression form for functions: the only way to designatea function is to use a fun binding to bind it to an identi�er, and then to referto it by name. But why should we insist that all functions have names?There is a good reason for naming functions in certain circumstances, as weshall see below, but it also makes sense to have anonymous functions, orlambda's (the latter terminology comes from LISP and the �-calculus.)Here are some examples of the use of function constants and their rela-tionship to clausal function de�nitions:- fun listify x = [x];> val listify = fn : 'a->'a list- val listify2 = fn x=>[x];> listify2 = fn : 'a->'a list- listify 7;> [7] : int list- listify2 7;> [7] : int list- (fn x=>[x])(7);> [7] : int list- val l=[1,2,3];> val l = [1,2,3] : int list- map(fn x=>[x],l);> [[1],[2],[3]] : int list listWe begin by giving the de�nition of a very simple function called listifythat makes a single element list out of its argument. The function listify2is exactly equivalent, except that it makes use of a function constant. Theexpression fn x=>[x] evaluates to a function that, when given an objectx, returns [x], just as listify does. In fact, we can apply this function\directly" to the argument 7, obtaining [7]. In the last example, we passthe function denoted by fn x=>[x] to map (de�ned above), and obtain thesame result as we did from map listify l.Just as the fun binding provides a way of de�ning a function by pat-tern matching, so may anonymous functions use pattern-matching in theirde�nitions. For example,- (fn nil => nil | hd::tl => tl)([1,2,3]);> [2,3] : int list

32 CHAPTER 2. THE CORE LANGUAGE- (fn nil => nil | hd::tl => tl)([]);> nil : int listThe clauses that make up the de�nition of the anonymous function are col-lectively called a match.The very anonymity of anonymous functions prevents us from writingdown an anonymous function that calls itself recursively. This is the reasonwhy functions are so closely tied up with declarations in ML: the purpose ofthe fun binding is to arrange that a function have a name for itself while itis being de�ned.Exercise 2.5.8 Consider the problem of deciding how many di�erent waysthere are of changing $1 into 1, 2, 5, 10, 20 and 50 pence coins. Supposethat we impose some order on the types of coins. Then it is clear that thefollowing relation holdsNumber of ways to change amount a using n kinds of coins= Number of ways to change amount a using all but the �rst kind of coin+ Number of ways to change amount a-d using all n kinds of coins,where d is the denomination of the �rst kind of coin.This relation can be transformed into a recursive function if we specify thedegenerate cases that terminate the recursion. If a = 0, we will count this asone way to make change. If a < 0, or n = 0, then there is no way to makechange. This leads to the following recursive de�nition to count the numberof ways of changing a given amount of money.fun first_denom 1 = 1| first_denom 2 = 2| first_denom 3 = 5| first_denom 4 = 10| first_denom 5 = 20| first_denom 6 = 50;fun cc(0,_) = 1| cc(_,0) = 0| cc(amount, kinds) =if amount < 0 then 0

2.6. POLYMORPHISM AND OVERLOADING 33elsecc(amount-(first_denom kinds), kinds)+ cc(amount, (kinds-1));fun count_change amount = cc(amount, 6);Alter this example so that it accepts a list of denominations of coins tobe used for making change.Exercise 2.5.9 The solution given above is a terrible way to count changebecause it does so much redundant computation. Can you design a betteralgorithm for computing the result (this is hard, and you might like to skipthis exercise on �rst reading).Exercise 2.5.10 (The Towers of Hanoi) Suppose you are given three rodsand n disks of di�erent sizes. The disks can be stacked up on the rods, therebyforming \towers". Let the n disks initially be placed on rod A in order of de-creasing size. The task is to move the n disks from rod A to rod C suchthat they are ordered in the original way. This has to be achieved under theconstraints that1. In each step exactly one disk is moved from one rod to another rod2. A disk may never be placed on top of a smaller disk3. Rod B may be used as an auxiliary store.De�ne a function to perform this task.2.6 Polymorphism and OverloadingThere is a subtle, but important, distinction that must be made in orderfor you to have a proper grasp of polymorphic typing in ML. Recall that wede�ned a polytype as a type that involved a type variable; those that do notare called monotypes. In the last section we de�ned a polymorphic functionas one that works for a large class of types in a uniform way. The key idea isthat if a function \doesn't care" about the type of a value (or component ofa value), then it works regardless of what that value is, and therefore works

34 CHAPTER 2. THE CORE LANGUAGEfor a wide class of types. For example, the type of append was seen to be'a list * 'a list -> 'a list, re
ecting the fact that append does notcare what the component values of the list are, only that the two argumentsare both lists having elements of the same type. The type of a polymorphicfunction is always a polytype, and the collection of types for which it isde�ned is the in�nite collection determined by the instances of the polytype.For example, append works for int list's and bool list's and int*boollist's, and so on ad in�nitum. Note that polymorphism is not limited tofunctions: the empty list nil is a list of every type, and thus has type 'alist.This phenomenon is to be contrasted with another notion, known as over-loading. Overloading is a much more ad hoc notion than polymorphism be-cause it is more closely tied up with notation than it is with the structure ofa function's de�nition. A �ne example of overloading is the addition func-tion, +. Recall that we write 3+2 to denote the sum of two integers, 3 and2, and that we also write 3.0+2.0 for the addition of the two real numbers3.0 and 2.0. This may seem like the same phenomenon as the appendingof two integer lists and the appending of two real lists, but the similarity isonly apparent: the same append function is used to append lists of any type,but the algorithm for addition of integers is di�erent from that for additionfor real numbers. (If you are familiar with typical machine representationsof integers and
oating point numbers, this point is fairly obvious.) Thusthe single symbol + is used to denote two di�erent functions, and not a sin-gle polymorphic function. The choice of which function to use in any giveninstance is determined by the type of the arguments.This explains why it is not possible to write fun plus(x,y)=x+y in ML:the compiler must know the types of x and y in order to determine whichaddition function to use, and therefore is unable to accept this de�nition. Theway around this problem is to explicitly specify the type of the argument toplus by writing fun plus(x:int,y:int)=x+y so that the compiler knowsthat integer addition is intended. It it an interesting fact that in the absenceof overloaded identi�ers such as +, it is never necessary to include explicittype information.5 But in order to support overloading and to allow you toexplicitly write down the intended type of an expression as a double-checkingmeasure, ML allows you to qualify a phrase with a type expression. Here are5Except occasionally when using partial patterns, as in fun f fx,...g = x

2.6. POLYMORPHISM AND OVERLOADING 35some examples:- fun plus(x,y) = x+y;Unresolvable overloaded identifier: +- fun plus(x:int,y:int) = x+y;> val plus = fn : int*int->int- 3 : bool;Type clash in: 3 : boolLooking for a: boolI have found a: int- (plus,true): (int*int->int) * bool;> (fn, true) : (int*int->int) * bool- fun id(x:'a) = x;> val id = fn : 'a -> 'aNote that one can write polytypes just as they are printed by ML: typevariables are identi�ers preceded by a single quote.Equality is an interesting \in-between" case. It is not a polymorphicfunction in the same sense that append is, yet, unlike +, it is de�ned forarguments of (nearly) every type. As discussed above, not every type admitsequality, but for every type that does admit equality, there is a function =that tests whether or not two values of that type are equal, returning trueor false, as the case may be. Now since ML can tell whether or not agiven type admits equality, it provides a means of using equality in a \quasi-polymorphic" way. The trick is to introduce a new kind of type variable,written ''a, which may be instantiated to any type that admits equality (an\equality type", for short). The ML type checker then keeps track of whethera type is required to admit equality, and re
ects this in the inferred type ofa function by using these new type variables. For example,- fun member(x, nil) = false| member(x, h::t) = if x=h then true else member(x,t);> val member = fn : ''a * ''a list -> boolThe occurrences of ''a in the type of member limit the use of member to thosetypes that admit equality.

36 CHAPTER 2. THE CORE LANGUAGE2.7 De�ning typesThe type system of ML is extensible. Three forms of type bindings areavailable, each serving to introduce an identi�er as a type constructor.The simplest form of type binding is the transparent type binding, or typeabbreviation. A type constructor is de�ned, perhaps with parameters, asan abbreviation for a (presumably complex) type expression. There is nosemantic signi�cance to such a binding | all uses of the type constructorare equivalent to the de�ning type.- type intpair = int * int ;> type intpair = int * int- fun f(x:intpair) = let val (l,r)=x in l end ;> val f = fn : intpair -> int- f(3,2);> 3 : int- type 'a pair = 'a * 'a> type 'a pair = 'a * 'a- type boolpair = bool pair> type boolpair = bool pairNotice that there is no di�erence between int*int and intpair becauseintpair is de�ned to be equal to int*int. The only reason to qualify x with:intpair in the de�nition of f is so that its type prints as intpair->int.The type system of ML may be extended by de�ning new compound typesusing a datatype binding. A data type is speci�ed by giving it a name (andperhaps some type parameters) and a set of value constructors for buildingobjects of that type. Here is a simple example of a datatype declaration:- datatype color = Red | Blue | Yellow ;> type colorcon Red : colorcon Blue : colorcon Yellow : color- Red;> Red : colorThis declaration declares the identi�er color to be a new data type, with

2.7. DEFINING TYPES 37constructors Red, Blue, and Yellow.6 This example is reminiscent of theenumeration type of Pascal.Notice that ML prints type color, without any equation attached, tore
ect the fact that color is a new data type. It is not equal to any other typepreviously declared, and therefore no equation is appropriate. In additionto de�ning a new type, the datatype declaration above also de�nes threenew value constructors. These constructors are printed with the keywordcon, rather than val, in order to emphasize that they are constructors, andmay therefore be used to build up patterns for clausal function de�nitions.Thus a datatype declaration is a relatively complex construct in ML: itsimultaneously creates a new type constructor and de�nes a set of valueconstructors for that type.The idea of a data type is pervasive in ML. For example, the built-in typebool can be thought of as having been pre-declared by the compiler as- datatype bool = true | false ;> type boolcon true : boolcon false : boolFunctions may be de�ned over a user-de�ned data type by pattern match-ing, just as for the primitive types. The value constructors for that data typedetermine the overall form of the function de�nition, just as nil and :: areused to build up patterns for functions de�ned over lists. For example,- fun favorite Red = true| favorite Blue = false| favorite Yellow = false ;> val favorite = fn : color->bool- val color = Red;> val color = Red : color- favorite color;> true : boolThis example also illustrates the use of the same identi�er in two di�erentways. The identi�er color is used as the name of the type de�ned above,and as a variable bound to Red. This mixing is always harmless (though6Nullary constructors (those with no arguments) are sometimes called constants.

38 CHAPTER 2. THE CORE LANGUAGEperhaps confusing) since the compiler can always tell from context whetherthe type name or the variable name is intended.Not all user-de�ned value constructors need be nullary:- datatype money = nomoney | coin of int | note of int |check of string*int ;> type moneycon nomoney : moneycon coin : int->moneycon note : int->moneycon check : string*int->money- fun amount(nomoney) = 0| amount(coin(pence)) = pence| amount(note(pounds)) = 100*pounds| amount(check(bank,pence)) = pence ;> val amount = fn : money->intThe type money has four constructors, one a constant, and three with ar-guments. The function amount is de�ned by pattern-matching using theseconstructors, and returns the amount in pence represented by an object oftype money.What about equality for user-de�ned data types? Recall the de�nitionof equality of lists: two lists are equal i� either they are both nil, or theyare of the form h::t and h'::t', with h equal to h' and t equal to t'. Ingeneral, two values of a given data type are equal i� they are \built the sameway" (i.e., they have the same constructor at the outside), and correspondingcomponents are equal. As a consequence of this de�nition of equality for datatypes, we say that a user-de�ned data type admits equality i� each of thedomain types of each of the value constructors admits equality. Continuingwith the money example, we see that the type money admits equality becauseboth int and string do.- nomoney = nomoney;> true : bool- nomoney = coin(5);> false : bool- coin(5) = coin(3+2);> true : bool

2.7. DEFINING TYPES 39- check("TSB",500) <> check("Clydesdale",500);> true : boolData types may be recursive. For example, suppose that we wish to de�nea type of binary trees. A binary tree is either a leaf or it is a node with twobinary trees as children. The de�nition of this type in ML is as follows:- datatype btree = empty | leaf | node of btree * btree ;> type btreecon empty : btreecon leaf : btreecon node : btree*btree->btree- fun countleaves(empty) = 0| countleaves(leaf) = 1| countleaves(node(tree1,tree2)) =countleaves(tree1)+countleaves(tree2) ;> val countleaves = fn : btree->intNotice how the de�nition parallels the informal description of a binary tree.The function countleaves is de�ned recursively on btree's, returning thenumber of leaves in that tree.There is an important pattern to be observed here: functions on recursive-ly-de�ned data values are de�ned recursively. We have seen this patternbefore in the case of functions such as append which is de�ned over lists.The built-in type � list can be considered to have been de�ned as follows:7- datatype 'a list = nil | :: of 'a * 'a list ;> type 'a listcon nil : 'a listcon :: : ('a * ('a list)) -> ('a list)This example illustrates the use of a parametric data type declaration: thetype list takes another type as argument, de�ning the type of the membersof the list. This type is represented using a type variable, 'a in this case, asargument to the type constructor list. We use the phrase \type constructor"because list builds a type from other types, much as value constructors buildvalues from other values.7This example does not account for the fact that :: is an in�x operator, but we willneglect that for now.

40 CHAPTER 2. THE CORE LANGUAGEHere is another example of a recursively-de�ned, parametric data type.- datatype 'a tree = empty | leaf of 'a |node of 'a tree * 'a tree ;> type 'a treecon empty : 'a treecon leaf : 'a->'a treecon node : 'a tree*'a tree->'a tree- fun frontier(empty) = []| frontier(leaf(x)) = [x]| frontier(node(t1,t2)) =append(frontier(t1),frontier(t2));> val frontier = fn : 'a tree -> 'a list- val tree = node(leaf("a"),node(leaf("b"),leaf("c"))) ;> val tree = node(leaf("a"),node(leaf("b"),leaf("c"))): string tree- frontier tree;> ["a","b","c"] : string listThe function frontier takes a tree as argument and returns a list consistingof the values attached to the leaves of the tree.Exercise 2.7.1 Design a function samefrontier(x,y) which returns trueif the same elements occur in the same order, regardless of the internal struc-ture of x and y, and returns false otherwise. A correct, but unsatisfactoryde�nition isfun samefrontier(x,y) = (frontier x) = (frontier y)This is a di�cult exercise, the problem being to avoid
attening a huge treewhen it is frontier unequal to the one with which it is being compared.ML also provides a mechanism for de�ning abstract types using an abstypebinding.8 An abstract type is a data type with a set of functions de�ned onit. The data type itself is called the implementation type of the abstract type,and the functions are called its interface. The type de�ned by an abstypebinding is abstract because the constructors of the implementation type are8Abstract types in this form are, for the most part, superseded by the modules systemdescribed in the next chapter.

2.7. DEFINING TYPES 41hidden from any program that uses the type (called a client): only the inter-face is available. Since programs written to use the type cannot tell what theimplementation type is, they are restricted to using the functions providedby the interface of the type. Therefore the implementation can be changedat will, without a�ecting the programs that use it. This is an importantmechanism for structuring programs so as to prevent interference betweencomponents.Here is an example of an abstract type declaration.- abstype color = blend of int*int*intwith val white = blend(0,0,0)and red = blend(15,0,0)and blue = blend(0,15,0)and yellow = blend(0,0,15)fun mix(parts:int, blend(r,b,y),parts':int, blend(r',b',y')) =if parts<0 orelse parts'<0 then whiteelse let val tp=parts+parts'and rp = (parts*r+parts'*r') div tpand bp = (parts*b+parts'*b') div tpand yp = (parts*y+parts'*y') div tpin blend(rp,bp,yp)endend;> type colorval white = - : colorval red = - : colorval blue = - : colorval yellow = - : colorval mix = fn : int*color*int*color->color- val green = mix(2, yellow, 1, blue);> val green = - : color- val black = mix(1, red, 2, mix(1, blue, 1, yellow));> val black = - : colorThere are several things to note about this declaration. First of all, thetype equation occurring right after abstype is a data type declaration: ex-actly the same syntax applies, as the above example may suggest. Following

42 CHAPTER 2. THE CORE LANGUAGEthe de�nition of the implementation type is the interface declaration, be-tween with and end. Examining ML's output for this declaration, we seethat ML reports type color without an equation, re
ecting the fact that itis a new type, unequal to any others. Furthermore, note that no construc-tors are declared as a result of the abstype declaration (unlike the case ofdata type de�nitions). This prevents the client from building an object oftype color by any means other than using one of the values provided by theinterface of the type. These two facts guarantee that the client is insulatedfrom the implementation details of the abstract type, and therefore allowsfor a greater degree of separation between client and implementor. Amongother things, this allows for more
exibility in program maintenance, as theimplementation of color is free to be changed without a�ecting the client.Note, however, that the functions de�ned within the with clause do have ac-cess to the implementation type and its constructors, for otherwise the typewould be quite useless!Note that the insulation of the client from the implementation of theabstract type prevents the client from de�ning functions over that type bypattern matching. It also means that abstract types do not admit equality.If an abstract type is to support an equality test, then the implementor mustde�ne an equality function for it.Thus there are three ways to de�ne type constructors in ML. Transparenttype bindings are used to abbreviate complex type expressions, primarily forthe sake of readability, rather than to introduce a new type. Data type bind-ings are used to extend the type system of ML. A data type is speci�ed bydeclaring a new type constructor and providing a set of value constructors forthat type. Data type de�nitions are appropriate for specifying data that isdescribed structurally (such as a tree), for then it is natural that the under-lying structure be visible to the client. For data structures that are de�nedbehaviorally (such as a stack or a priority queue), an abstract type de�nitionis appropriate: the structural realization is not part of the de�nition of thetype, only the functions that realize the de�ned behavior are relevant to theclient.Exercise 2.7.2 An abstract type set might be implemented byabstype 'a set = set of 'a listwith val emptyset: 'a set = ...

2.8. EXCEPTIONS 43fun singleton (e: 'a): 'a set = ...fun union(s1: 'a set, s2: 'a set): 'a set = ...fun member(e: 'a, s: 'a set): bool = ...| member(e, set (h::t)) = (e = h)orelse member(e, set t)fun intersection(s1: 'a set, s2: 'a set): 'a set = ...end;Complete the de�nition of this abstract type.Exercise 2.7.3 Modify your solution so that the elements of the set arestored in an ordered list. [Hint: One approach would be to pass the order-ing relation as an additional parameter to each function. Alternatively, theordering relation could be supplied to those functions that create a set fromscratch, and embedded in the representation of a set. The union functioncould then access the ordering relation from the representation of one of itsarguments, and propagate it to the union set. We will return to this problemlater, when a more elegant mechanism for performing this parameterizationwill be discussed]2.8 ExceptionsSuppose that we wish to de�ne a function head that returns the head of a list.The head of a non-empty list is easy to obtain by pattern-matching, but whatabout the head of nil? Clearly something must be done to ensure that headis de�ned on nil, but it is not clear what to do. Returning some default valueis undesirable, both because it is not at all evident what value this might be,and furthermore it limits the usability of the function (if head(nil) werede�ned to be, say, nil, then head would apply only to lists of lists).In order to handle cases like this, ML has an exception mechanism. Thepurpose of the exception mechanism is to provide the means for a function to\give up" in a graceful and type-safe way whenever it is unable or unwillingto return a value in a certain situation. The graceful way to write head is asfollows:- exception Head;> exception Head

44 CHAPTER 2. THE CORE LANGUAGE- fun head(nil) = raise Head| head(x::l) = x;> val head = fn : 'a list->'a- head [1,2,3];> 1 : int- head nil;> Failure: HeadThe �rst line is an exception binding that declares head to be an exception.The function head is de�ned in the usual way by pattern-matching on theconstructors of the list type. In the case of a non-empty list, the value ofhead is simply the �rst element. But for nil, the function head is unable toreturn a value, and instead raises an exception. The e�ect of this is seen inthe examples following the declaration of head: applying head to nil causesthe message Failure: Head to be printed, indicating that the expressionhead(nil) caused the exception Head to be raised. Recall that attempts todivide by zero result in a similar message; the internally-de�ned function divraises the exception Div if the divisor is 0.With exception and raise we can de�ne functions that
ag undesirableconditions by raising an exception. But to be complete, there ought to be away of doing something about an error, and indeed there is such a mechanismin ML, called an exception handler, or simply a handler. We illustrate its useby a simple example:- fun head2 l = head(l) handle Head => 0;> val head2 = fn : int list->int- head2([1,2,3]);> 1 : int;- head2(nil);> 0 : intThe expression e handle exn => e0 is evaluated as follows: �rst, evaluate e;if it returns a value v, then the value of the whole expression is v; if it raisesthe exception exn, then return the value of e0; if it raises any other exception,then raise that exception. Notice that the type of e and the type of e0 mustbe the same; otherwise, the entire expression would have a di�erent typedepending on whether or not the left-hand expression raised an exception.This explains why the type of head2 is int list->int, even though l does

2.8. EXCEPTIONS 45not appear to be constrained to be an integer list. Continuing the aboveexample, head2 applies head to l; if it returns a value, then that is the valueof head2; if it raises exception Head, then head2 returns 0.Since a given expression may potentially raise one of several di�erentexceptions, several exceptions can be handled by a single handler as follows:- exception Odd;> exception Odd- fun foo n = if n mod 2 <> 0 thenraise Oddelse17 div n;> val foo = fn : int->int- fun bar m = foo(m) handle Odd => 0| Div => 9999 ;> val bar = fn : int->int- foo 0;> Failure: Div- bar 0;> 9999 : int- foo 3;> Failure: Odd- bar 3;> 0 : int- foo 20;> 1 : int- bar 20;> 1 : intThe function foo may fail in one of two ways: by dividing by zero, causingthe exception Div to be raised, or by having an odd argument, raising theexception Odd. The function bar is de�ned so as to handle either of thesecontingencies: if foo(m) raises the exception Odd, then bar(m) returns 0; ifit raises Div, it returns 9999; otherwise it returns the value of foo(m).Notice that the syntax of a multiple-exception handler is quite like thesyntax used for a pattern-matching de�nition of a lambda. In fact, onecan think of an exception handler as an anonymous function whose domaintype is exn, the type of exceptions, and whose range type is the type of the

46 CHAPTER 2. THE CORE LANGUAGEexpression appearing to the left of handle. From the point of view of typechecking, exceptions are nothing more than constructors for the type exn,just as nil and cons are constructors for types of the form 'a list.It follows that exceptions can carry values, simply by declaring them totake an argument of the appropriate type. The attached value of an exceptioncan be used by the handler of the exception. An example will illustrate thepoint.- exception oddlist of int list and oddstring of string;> exception oddlist of int listexception oddstring of string- ... handle oddlist(nil) => 0| oddlist(h::t) => 17| oddstring("") => 0| oddstring(s) => size(s)-1The exception declaration introduces two exceptions, oddlist, which takesa list of integers as argument, and oddstring, which takes a string. Thehandler performs a case analysis, both on the exception, and on its argument,just as we might de�ned a function by pattern matching against a data type.What happens if the elided expression in the previous example raises anexception other than oddstring or oddlist? Here the similarity to functionsends. For in the case of functions, if the match is not exhaustive, and thefunction is applied to an argument that fails to match any pattern, then theexception Match is raised. But in the case of exception handlers, the excep-tion is re-raised in the hope that an outer handler will catch the exception.For example,- exception Theirs and Mine;> exception Theirsexception Mine- fun f(x) = if x=0 then raise Mine else raise Theirs;> val f = fn : int -> 'a- f(0) handle Mine => 7;> 7 : int- f(1) handle Mine => 7;Failure: Theirs- (f(1) handle Mine => 7) handle Theirs => 8;

2.8. EXCEPTIONS 47> 8 : intSince exceptions are really values of type exn, the argument to a raiseexpression need not be simply an identi�er. For example, the function fabove might have been de�ned by- fun f(x) = raise (if x=0 then Mine else Theirs);> val f = fn : int -> 'aFurthermore, the wild-card pattern matches any exception whatsoever, sothat we may de�ne a handler that handles all possible exceptions simply beincluding a \default" case, as in:- ... handle _ => 0;An exception binding is a form of declaration, and so may have limitedscope. The handler for an exception must lie within the scope of its dec-laration, regardless of the name. This can sometimes lead to peculiar errormessages. For example,- exception Exc;> exception Exc- (let exception Exc in raise Exc end) handle Exc => 0;> Failure: ExcDespite appearances, the outer handler cannot handle the exception raisedby the raise expression in the body of the let, for the inner Exc is a distinctexception that cannot be caught outside of the scope of its declaration otherthan by a wild-card handler.Exercise 2.8.1 Explain what is wrong with the following two programs.1. exception exn: bool;fun f x =let exception exn: intin if x > 100 then raise exn with x else x+1end;f(200) handle exn with true => 500 | false => 1000;

48 CHAPTER 2. THE CORE LANGUAGE2. fun f x =let exception exnin if p x then a xelse if q x then f(b x) handle exn => c xelse raise exn with d xend;f v;Exercise 2.8.2 Write a program to place n queens on an n � n chess boardso that they do not threaten each other.Exercise 2.8.3 Modify your program so that it returns all solutions to theproblem.2.9 Imperative featuresML supports references and assignments. References are a type-safe formof pointer to the heap. Assignment provides a way to change the objectto which the pointer refers. The type � ref is the type of references tovalues of type � .9 The function ref:'a->'a ref allocates space in theheap for the value passed as argument, and returns a reference to that lo-cation. The function !:'a ref->'a is the \contents of" function, returningthe contents of the location given by the reference value, and the function:= : 'a ref*'a->unit is the assignment function.- val x = ref 0;> val x = ref(0) : int ref;- !x;> 0 : int- x := 3;> () : unit;- !x;> 3 : int9At present � must be a monotype, though it is expected that one of several proposedmethods of handling polymorphic references will soon be adopted.

2.9. IMPERATIVE FEATURES 49All reference types admit equality. Objects of type � ref are heap ad-dresses, and two such objects are equal i� they are identical. Note that thisimplies that they have the same contents, but the converse doesn't hold: wecan have two unequal references to the same value.- val x = ref 0 ;> val x = ref 0 : int ref- val y = ref 0 ;> val y = ref 0 : int ref- x=y ;> false : bool- !x = !y ;> true : boolThis corresponds in a language like Pascal to having two di�erent variableswith the same value assigned to them: they are distinct variables even thoughthey have the same value (at the moment). For those of you familiar withLISP, the equality of references in ML corresponds to LISP's eq function,rather than to equal.Along with references comes the usual imperative language constructssuch as sequential composition and iterative execution of statements. In MLstatements are expressions of type unit, expressing the idea that they areevaluated for their side e�ects to the store, rather than their value. Thein�x operator \;" implements sequencing, and the construct while e doe' provides iteration.Exercise 2.9.1 The following abstract type may be used to create an in�nitestream of values.abstype 'a stream = stream of unit -> ('a * 'a stream)with fun next(stream f) = f()val mkstream = streamend;Given a stream s, next s returns the �rst value in the stream, and a streamthat produces the rest of the values. This is illustrated by the following ex-ample:

50 CHAPTER 2. THE CORE LANGUAGE- fun natural n = mkstream(fn () => (n, natural(n+1)));> val natural = fn : int -> int stream- val s = natural 0;> val s = - : int stream- val (first,rest) = next s;> val first = 0 : intval rest = - : int stream- val (next, _) = next rest;> val next = 1 : intWrite a function that returns the in�nite list of prime numbers in the formof a stream.Exercise 2.9.2 The implementation of the stream abstract type given abovecan be very ine�cient if the elements of the stream are examined more thanonce. This is because the next function computes the next element of thestream each time it is called. This is wasteful for an applicative stream (suchas the prime numbers example), as the value returned will always be thesame. Modify the abstract type so that this ine�ciency is removed by usingreferences.Exercise 2.9.3 Modify your stream abstract type so that streams can be �-nite or in�nite, with a predicate endofstream to test whether the stream has�nished.

Chapter 3The Modules System3.1 OverviewThe ability to decompose a large program into a collection of relatively inde-pendent modules with well-de�ned interfaces is essential to the task of build-ing and maintaining large programs. The ML modules sytem supplementsthe core language with constructs to facilitate building and maintaining largeprograms.Many modern programming languages provide for some form of modulardecomposition of programs into relatively independent parts. Exactly whatconstitutes a program unit and how they are related is by no means estab-lished in the literature, and consequently there is no standard terminology.Program components are variously called, among other things, \modules",\packages", and \clusters"; in ML we use the term \structure", short for\environment structure". This choice of terminology is telling: ML's con-ception of a program unit is that it is a rei�ed environment. Recall that theenvironment is the repository of the meanings of the identi�ers that havebeen declared in a program. For example, after the declaration val x=3,the environment records the fact that x has value 3, which is of type int.Now the fundamental notion underlying program modularization is that theaim is to partition the environment into chunks that can be manipulatedrelatively independently of one another. The reason for saying \relatively" isthat if two modules constitute a program, then there must be some form ofinteraction between them, and there must be some means of expressing and51

52 CHAPTER 3. THE MODULES SYSTEMmanaging this interaction. This is the problem of sharing.Exactly what sorts of operations one is able to perform with a programunit, and how sharing is managed, are the characteristic features of anymodularization system. At the very least, one wants a modules facility toallow for separate compilation of program units, some means of assemblingthe units into a complete program, and some form of insulation between theunits so as to avoid inadvertent dependency on \accidental" properties ofa unit such as the details of its implementation. Managing the interactionbetween insulation (abstraction) and sharing is the key issue that determinesthe form of solution to the other problems posed by the desire for modularprogram development.Just as the type of an identi�er mediates its use in a program, so struc-tures have a form of type, called a \signature", that describes the structure tothe rest of the world. In the literature the type of a program unit is called an\interface" or \package description". ML's terminology is suggested by theanalogy between an environment structure and an algebraic structure, thelatter's \type" being an (algebraic) signature. Just as types are a \summary"of the compile-time properties of an expression, so a signature is a summaryof the information that is known about a structure at compile time. However,in contrast to the core language, explicitly ascribing a signature to a struc-ture e�ects both the compile-time and run-time properties of that structureby de�ning a limited \view" of that structure.A functor is a function that takes structures to structures. The ideais that if a structure S depends on another structure T only to the extentspeci�ed in T 's signature, then S may be isolated from T 's implementationdetails by de�ning a function that, given any structure with T 's signature,returns the structure S with that structure \plugged in". In the literaturethis facility is called a \parameterized module" or a \generic package". In MLwe choose the term \functor" both because it is suggestive of its functionalcharacter and also because it accords with the mathematical terminologysurrounding structures and signatures mentioned above. The declaration ofa functor corresponds to building S in isolation, and the application of thatfunctor to a structure corresponds to linking together the parts of a programto form a coherent whole. Functors are also the basis for an elegant form ofinformation hiding, called an abstraction. For most purposes, abstractionsare a replacement for abstract types.We begin our introduction to the modules facility by looking at structures

3.2. STRUCTURES AND SIGNATURES 53and signatures.3.2 Structures and SignaturesA structure is essentially an environment turned into a manipulable object.The basic form of expression denoting a structure is called an encapsulateddeclaration, consisting of a declaration bracketed by the keywords structand end. Here is a simple example of an encapsulated declaration:structtype t = int ;val x = 3 ;fun f(x) = if x=0 then 1 else x*f(x-1)endThe \value" of this encapsulated declaration is a structure in which the typeidenti�er t is bound to int, and the value identi�ers x and f are bound to3 and the factorial function, respectively. Although we shall regard a struc-ture as a kind of value (the kind denoted by an encapsulated declaration),it does not have the same status as ordinary values. In particular, one maynot simply enter an encapsulated declaration at top level the way that onemight enter an arithmetic expression. However, they may be bound to iden-ti�ers using structure bindings, a form of declaration that may appear onlyat top level or within an encapsulated declaration. For the time being wewill restrict our attention to structure bindings at the top level, and deferdiscussion of structure bindings within structures until later. Thus we maybind the above structure to an identi�er as follows:- structure S =structtype t = intval x = 3;fun f(x) = if x=0 then 1 else x*f(x-1)end;> structure S =structtype t = int

54 CHAPTER 3. THE MODULES SYSTEMval f = fn : int -> intval x = 3 : intendNotice that the result of evaluating the structure binding is an environment.1Consequently, ML prints the environment resulting from the declaration be-tween struct and end almost as though it were typed directly at top level.Of course, a structure is an independent environment in that the declarationwithin an encapsulated declaration does not e�ect the top level environment.So, for example, neither t nor f are available at top level after the above dec-laration.However, they may be accessed by reaching into the structure bound toS using a quali�ed name. A quali�ed name consists of a structure path anda simple identi�er, separated by a dot. For the present, a structure path issimply a single structure identi�er; later on we will need to generalize pathsto a sequence of structure identi�ers. We may refer to the components of thestructure S using quali�ed names as follows:- x;Type checking error in: xUnbound value identifier: x- S.x;> 3 : int- S.f(S.x);> 6 : int- S.x: S.t;> 3 : S.tThe expression S.x is a quali�ed name that refers to the value identi�er x inthe structure S. Its value, as you might expect, is 3. Similarly, S.f designatesthe function f de�ned in the structure S, the factorial function. When it isapplied to S.x (that is, to 3), it returns 6. Reference to the identi�ers de�nedby S is not limited to values: the last example illustrates the use of the typeidenti�er S.t, de�ned in S to be int.If you are writing a bit of code that refers to several components of asingle structure, it can get quite tedious to continually use quali�ed names.1For technical reasons some implementations of ML rearrange the environment beforeprinting.

3.2. STRUCTURES AND SIGNATURES 55To alleviate this problem, ML provides a declaration form that opens up astructure and incorporates its bindings into the local environment so thatthey can be referred to directly.- let open S in f(x) end;> 6 : int- open S;> val x = 3 : int> val f = fn : int->int> type t = intIn the �rst example we locally open structure S within a let expression sothat we can write f(x) instead of the more verbose S.f(S.x). In the secondexample we open S at the top level, thereby adding its bindings to the toplevel environment, as can be seen by the result of the expression.It is often helpful to think of a structure as a kind of value both becauseit re
ects the idea of treating environments as objects and also because itsuggests the sorts of operations that one might perform on them. Just asevery value in the core language has a type, so structures have types as well,namely signatures. Signatures describe structures in much the same waythat types describe ordinary values in that they serve as a description of thecomputational role of the value by determining the sorts of ways in whichit can be used. This is necessarily vague, and signatures are not just a newform of type, but nonetheless, this analogy should help you to see what'sgoing on.If we examine the output of ML on the above examples, we notice acertain inconsistency between the report for structure bindings and the reportfor value bindings (at least as long as we push the \structures as values"analogy): whereas for value bindings ML reports both the value and thetype, for structure bindings only a form of value is printed. Let's considerwhat would happen if ML were to adhere to the val binding convention forstructure bindings.- structure S =structval x = 2+2 ;val b = (x=4)end;

56 CHAPTER 3. THE MODULES SYSTEM> structure S =structval x = 4val b = trueend: sigval x : intval b : boolendIn this fanciful example, the type information for the variables appears in thesignature, whereas the value appears in the structure. This accords with ourintuitive idea of a signature as a description of a value, the structure. Onecan see that the val binding format is rather awkward for \fat" objects likestructures, so the actual ML system prints an amalgamation of the structureand its signature in response to a structure binding.The expression bracketed by sig and end in the above example is called asignature, the body of which is called a speci�cation. A speci�cation is similarto a declaration, except that it merely describes an identi�er (by assigning ita type) rather than giving it a value (and implicitly a type). For the presentwe consider only val speci�cations, adding the other forms as we go along.In the above example, x is speci�ed to have type int and b type bool.Signature expressions are not limited to the output of the ML compiler.They play a crucial role in the use of the modules system, particularly infunctor declarations, and therefore are often typed directly by the user. Sig-natures may be bound to signature identi�ers using signature bindings inmuch the same way that types may be bound to type identi�ers using typebindings. Signature bindings are introduced with the keyword signature,and may only appear at top level.- signature SIG =sigval x : intval b : boolend;> signature SIG =sig

3.2. STRUCTURES AND SIGNATURES 57val x : intval b : boolend;The output from a signature binding is not very enlightening, and so I'll omitit from future examples.The primary signi�cance of signatures lies in signature matching. A struc-ture matches a signature if, roughly, the structure satis�es the speci�cationin the signature. Since speci�cations are similar to types, the idea is simi-lar to type checking in the core language, though the details are a bit morecomplex. One use of signatures is to attach them to structure identi�ers instructure bindings as a form of correctness check in which we specify thatthe structure being bound must match the given signature.- structure S : SIG =structval x = 2+1val b = x=7end;> structure S =structval x = 3 : intval b = false : boolendThe notation :SIG on the structure binding indicates that the encapsulateddeclaration on the right of the equation must match the signature SIG.Since ML accepted the above declaration, it must be that the structuredoes indeed match the given signature. Why is that the case? The givenstructure matches SIG because1. S.x is bound to 3, which is of type int, as required by SIG,and2. S.b is bound to false, which is of type bool.In short, if a variable x is assigned a type � in a signature, then the corre-sponding expression bound to x in the structure must have type � .The signature may require less than the structure presents. For example,

58 CHAPTER 3. THE MODULES SYSTEM- structure S : SIG =structval x = 2+1val b = falseval s = "Garbage"end;> structure S =structval x = 3 : intval b = false : boolendHere the structure bound to S de�nes variables x, b, and s, while the signatureSIG only requires x and b. Not only is the type of s immaterial to thesignature matching, but it is also removed from the structure by the processof signature matching. The idea is that SIG de�nes a view of the structureconsisting only of x and b. Other signatures may be used to obtain otherviews of the same structure, as in the following example:- structure S =structval x = 2+1val b = falseval s = "String"end;> structure S =structval x = 3 : intval b = false : boolval s = "String" : stringend- signature SIG' =sigval x : intval b : boolendand SIG'' =sig

3.2. STRUCTURES AND SIGNATURES 59val b : boolval s : stringend;- structure S' : SIG' = S and S'' : SIG'' = s;> structure S' =structval x = 3 : intval b = false : boolendstructure S'' =structval b = false : boolval s = "String" `` stringendExercise 3.2.1 A signature for structures that possess an ordering can bewritten assignature ORD =sigtype tval le: t * t -> boolendCreate structures for ordered integers and (real*string) pairs to match thissignature.If a value in a structure has polymorphic type, then it satis�es a speci�-cation only if the polymorphic type has the speci�ed type as an instance. So,for example, if x is bound in some structure to nil, which as type 'a list,then x satis�es the speci�cations int list and bool list list, for exam-ple, as should be obvious by now. But what happens if the speci�cation typeis polymorphic? Let's suppose that an identi�er f is speci�ed to have type'a list->'a list. In order to satisfy this speci�cation, a structure mustbind a value to f that can take an arbitrary list to another list of that type.Thus it is not good enough that f be of type, say, int list->int list, forthe speci�cation requires that f work for bool list as well. The generalprinciple is that the value in the structure must be at least as general as that

60 CHAPTER 3. THE MODULES SYSTEMin the speci�cation. So if f is bound in a structure to the identity function,which has type 'a->'a, then it satis�es the speci�cation above. The reasonis that it takes a value of any type, and returns a value of that type, so afortiori it can take a list of any type and return a list of that type. Here'san example to summarize:- signature SIG =sigval n : 'a listval l : int listval f : 'a list -> 'a listend;- structure S : SIG =structval n = nil (* : 'a list *)val l = nil (* : 'a list *)fun f(x) = x (* : 'a -> 'a *)endExercise 3.2.2 What is wrong with the following declaration?structure S : SIG =structval n = [3,4]val l = nilfun f(x) = xendException bindings within structures are subject to the same restrictionas for exception bindings in the core language: they must have monotypes.Exception speci�cations prescribe the type of the exception only, and therules for signature matching are the same as for variables, except that thecomplications related to polymorphic types do not arise.- structure S =structexception Barfexception Crap = Barf

3.2. STRUCTURES AND SIGNATURES 61fun f(x) = if x=0 then raise Barfelse if x=1 then raise Crapelse 7end;> structure S =structexception Barfexception Crapval f = fn : int->intend- S.f(0);Failure: Barf- S.f(4);> 7 : intType declarations and speci�cations raise more interesting questions.First, let's consider transparent type bindings in structures, such as in the�rst example of this section in which t is bound to int. What might the sig-nature of such a structure be? Let's consider an example under the imaginarystructure-printing regime that we considered above.- structure S =structtype t = intval x = 3fun f(x) = if x=0 then 1 else x*f(x-1)end;> structure S =structtype t = intval f = fnval x = 3end: sigtype tval f : int->intval x : int

62 CHAPTER 3. THE MODULES SYSTEMendThe speci�cation of identi�er t in the structure bound to S is just type t,indicating that its \value" is a type (namely, int).When a type identi�er takes an argument, the speci�cation is written inthe obvious way:- structure S =structtype 'a t = 'a * intval x = (true,3)end;> structure S =structtype 'a t = 'a * intval x = (true,3)end: sigtype 'a tval x : bool * intendNotice the form of the speci�cation for t.Both of the above speci�cation forms are acceptable in signature expres-sions. But what happens to signature matching? Consider the followingexample:- signature SIG =sigtype 'a tval x : int * boolend;- structure S : SIG =structtype 'a t = 'a * boolval x = (3,true)end;

3.2. STRUCTURES AND SIGNATURES 63> structure S =structtype 'a t = 'a * boolval x = (3,true) : int * boolendThe structure bound to Smatches SIG because S.t is a unary (one argument)type constructor, as speci�ed in SIG.If a signature speci�es a type constructor, then that type constructor maybe used in the remainder of the speci�cation. Here's an example:- signature SIG =sigtype 'a tval x: int tend;This signature speci�es the class of structures that de�ne a unary type con-structor t and a variable of type int t (for that type constructor t).Now let's return to the structure S above, and consider whether or notit matches this signature SIG. According to the informal reading of SIG justgiven, S ought to match SIG. More precisely, S matches SIG because1. S.t is a unary type constructor, as required;2. The type of S.x is int*bool. Now int t is equal to int*bool,by de�nition of S.t, and therefore S.x satis�es the speci�-cation int t.It is important to realize that during signature matching, all of the typeidenti�ers in the signature are taken to refer to the corresponding identi�ersin the structure, so that the speci�cation int t is taken to mean int S.t.Exercise 3.2.3 Which signatures match the following structure?structure S =structtype 'a t = 'a * intval x = (true, 3)end

64 CHAPTER 3. THE MODULES SYSTEMAs a methodological point, it is usually wise to adhere to the signatureclosure rule, which states that the free identi�ers of a signature are to belimited to signature identi�ers and built-in functions like + and :: (the so-called pervasives).Exercise 3.2.4 Givenstructure A = struct datatype 'a D = d of 'a endwhich of the following are valid signatures forstructure B =structtype t = int A.Dfun f(A.d(x)) = A.d(x+1)end1. sig type t val f: int A.D -> int A.D end2. sig type t val f: t -> int A.D end3. sig type t val f: t -> t endData type declarations in structures present no great di�culties. Considerthe following example:- signature SIG =sigtype 'a Listval Append : 'a List * 'a List -> 'a Listend;- structure S : SIG =structdatatype 'a List = Nil | Cons of 'a * 'a Listfun Append(x,Nil) = x| Append(x,Cons(h,t)) = Cons(h,Append(x,t))end;> structure S =structtype 'a Listval Append = fn : 'a List * 'a List -> 'a Listend

3.2. STRUCTURES AND SIGNATURES 65As an exercise, convince yourself that S matches SIG by arguing along thesame lines as we've done for the other examples considered so far.In the above example the signature SIG ascribed to S has no entries forthe constructors of the data type List. There are two ways to specify theconstructors in SIG. One is to treat them just like ordinary values, as thefollowing example illustrates.- signature SIG =sigtype 'a Listval Nil : 'a Listval Cons : 'a * 'a List -> 'a Listval Append : 'a List * 'a List -> 'a Listend;- structure S : SIG =structdatatype 'a List = Nil | Cons of 'a * 'a Listfun Append(x,Nil) = x| Append(x,Cons(h,t)) = Cons(h,Append(x,t))end;> structure S =structtype 'a Listval Nil : 'a Listval Cons : 'a * 'a List -> 'a Listval Append = fn : 'a List * 'b List -> 'a ListendNotice that 'a List is no longer a data type, and that Nil and Cons aresimply variables, not value constructors.The other possibility is to specify the constructors as constructors so thatthe structure of a type is visible. The way to do this is with the data typespeci�cation, which is syntactically identical to the data type declaration.Here's an example:- signature SIG =sigdatatype 'a List = Nil | Cons of 'a * 'a List

66 CHAPTER 3. THE MODULES SYSTEMval Append : 'a List * 'a List -> 'a Listend;- structure T : SIG = S;> structure T =structtype 'a Listcon Nil : 'a Listcon Cons : 'a * 'a List -> 'a Listval Append = fn : 'a List * 'a List -> 'a ListendThe utility of this approach to specifying constructors will be explained belowwhen we introduce functors.Abstract type declarations in structures do not present any new issues forsignature matching as they merely serve to declare a type and some identi�ersassociated with it. Abstract type speci�cations do not arise because, as weshall see below, we have another means of treating types abstractly, and sothere is no need of such a speci�cation.Exercise 3.2.5 De�ne an implementation of stacks using signatures andstructures.In practice, structures are typically built up from one another accordingto some pattern determined by the application. If a structure S is built fromanother structure T , then S is said to depend on T . MacQueen classi�esdependency in two ways. First, the dependence of S on T may be essen-tial or inessential. Essential dependence arises when S may only be used inconjunction with T | the relationship between the two is so close that theymay not be usefully separated. All other forms of dependence are inessen-tial. Second, the dependence of S on T may be either explicit or implicit.S explicitly depends on T if the signature of S can only be expressed byreference to the signature of T ; otherwise the dependence is implicit. Notethat explicit dependence is always essential.The simplest case of inessential dependence occurs when S imports a valuefrom T, as in the following example:- structure T =struct

3.2. STRUCTURES AND SIGNATURES 67val x = 7end;> structure T =structval x = 7 : intend- structure S =structval y = T.x + 1end;> structure S =structval y = 8 : intendIt is clear that S can be used independently of T, even though S was de�nedby reference to T. This form of dependence is sometimes called dependenceby construction.Essential dependence is much more important. One form of essentialdependence occurs when T declares an exception that can be raised by afunction in S. For example,- structure T =structexception Barffun foo(x) = if x=0 then raise Barf else 3 div xend;> structure T =structexception Barfval foo = fn : int->intend- structure S =structfun g(x) = T.foo(x) + 1endSince S.g(0) raises the exception Barf, the use of S is limited to contexts inwhich T is available, for otherwise one cannot handle the exception. Therefore

68 CHAPTER 3. THE MODULES SYSTEMS depends essentially on T, and ought to be packaged together with it. Note,however, that the dependence is implicit, for the signature of S printed byML does not make reference to T.Essential and explicit dependence occurs when S overtly uses a data typede�ned in T, as in- structure T =structdatatype 'a List = Nil | Cons of 'a * 'a Listfun len(Nil) = 0| len(Cons(h,t)) = 1 + len(t)end;> structure T =structtype 'a Listcon Nil : 'a Listcon Cons : 'a * 'a List -> 'a Listval len = fn : 'a List -> intend- structure S =structval len = T.lenend;> structure S =structval len = fn : 'a T.List -> intendNotice that the signature of S makes reference to the structure T, re
ectingthe fact that len may only be applied to values of a type de�ned in T.Note that the signature closure rule precludes the possibility of ascribinga non-trivial signature to S in the above example, for a signature expressionmay not contain free references to structure identi�ers such as T. This mayseem like an arbitrary restriction, but in fact it serves to call attention to thefact that S and T are closely related, and should be packaged together as aunit. This kind of packaging can be achieved by making T be a substructureof S by including the declaration of T within the encapsulated declaration ofS, as follows:

3.2. STRUCTURES AND SIGNATURES 69- structure S =structstructure T =structdatatype 'a List = Nil | Cons of 'a * 'a Listfun len(Nil) = 0| len(Cons(h,t)) = 1 + len(t)endval len = T.lenend;> structure S =structstructure T =structtype 'a Listcon Nil : 'a Listcon Cons : 'a * 'a List -> 'a Listval len = fn : 'a List -> intendval len = fn : 'a T.List -> intendIn this way one may form a hierarchical arrangement of interdependent struc-tures, and may thereby package together a related set of structures as a unit.Substructures require the de�nition of a structure path to be generalizedto an arbitrary dot-separated sequence of structure identi�ers, each a com-ponent of the previous. For example, S.T is a structure path, and S.T.lenis a quali�ed name that selects the function len in the structure T in thestructure S.By making T be a substructure of S, we can express the signature of Swithin the language by using substructure speci�cations and quali�ed names,as in the following example:- signature SIGT =sigdatatype 'a List = Nil | Cons of 'a * 'a Listval len : 'a List -> intend;

70 CHAPTER 3. THE MODULES SYSTEM- signature SIGS =sigstructure T : SIGTval len : 'a T.List -> intend;Notice the structure speci�cation in SIGS, which asserts that the substructureT is to match signature SIGT. Note also that the speci�cation of len in SIGSmentions T.List, which is local to SIGS by virtue of the fact that T is asubstructure of S.Exercise 3.2.6 De�ne a structure Exp that implements a datatype of ex-pressions with associated operation. It should satisfy the signature- signature EXP =sigdatatype id = Id of stringdatatype exp = Var of id| App of id * (exp list)endDe�ne another signature SUBST, and structure Subst, that implements sub-stitutions for these expressions (i.e., de�ne a type subst in terms of a listof identi�er/expression pairs, and a substitute function, which, given a sub-stitution and an expression, returns the expression resulting from applyingsubstitution.3.3 AbstractionsWe noted above that the process of signature matching \cuts down" struc-tures so that they have only the components present in the signature. Theascription of a signature to a structure provides a \view" of that structure,so that signature matching provides a limited form of information hiding byrestricting access to only those components that appear in the signature.One reason to make such restrictions is that it can be helpful in programmaintenance to precisely de�ne the interface of each program module. Simi-lar concerns are addressed by abstract types in the core language: one reason

3.3. ABSTRACTIONS 71to use an abstract type is to ensure that all uses of that type are indepen-dent of the details of the implementation. Signature matching can providesome of the facilities of abstract types since with it one can \throw away"the constructors of a data type, thereby hiding the representation. But thisturns out to be a special case of a more general information hiding constructin ML, called an abstraction.The fundamental idea is that we would like, in certain circumstances, tolimit the view of a structure to being exactly what is speci�ed in the signature.The following example illustrates the point:- signature SIG =sigtype tval x : t -> tend;- structure S : SIG =structtype t = intval x = fn x => xend;> structure S =structtype t = intval x = fn : t -> tend- S.x(3);> 3 : int- S.x(3) : S.t;> 3 : int : S.tNote that S.t is int, even though SIG makes no mention of this fact.The purpose of an abstraction is to suppress all information about thestructure other than what explicitly appears in the signature.- abstraction S : SIG =structtype t = intval x = fn x => x

72 CHAPTER 3. THE MODULES SYSTEMend;> abstraction S : SIG- S.x(3);> 3 : int- S.x(3) : S.t;Type error in: S.x(3) : S.tLooking for a: intI have found a: S.tThe e�ect of the abstraction declaration is to limit all information about Sto what is speci�ed in SIG.There is a close connection between abstractions and abstract types. Con-sider the following abstract type:- abstype 'a set = set of 'a listwithval empty_set = set([])fun union(set(l1),set(l2)) = set(l1@l2)end;> type 'a setval empty_set = - : 'a setval union = fn : 'a set * 'a set -> 'a set- empty_set;> - : 'a setThis declaration de�nes a type 'a setwith operations empty set and union.The constructor set for sets is hidden in order to ensure that the type isabstract (i.e., that no client can depend on the representation details).In general, an abstype declaration de�nes a type and a collection ofoperations on it, while hiding the implementation type. Abstractions provideanother way of accomplishing the same thing, as the following example shows.- signature SET =sigtype 'a setval empty_set : 'a setval union : 'a set * 'a set -> 'a setend;

3.3. ABSTRACTIONS 73- abstraction Set : SET =structdatatype 'a set = set of 'a listval empty_set = set([])fun union(set(l1),set(l2)) = set(l1@l2)end;> abstraction Set : SET- Set.set;Undefined variable Set.set- S.empty_set;> - : 'a S.setExercise 3.3.1 De�ne an abstraction for complex numbers using the signa-ture - signature COMPLEX =sigtype complexexception divide : unitval rectangular: { real: real, imag: real } -> complexval plus: complex * complex -> complexval minus: complex * complex -> complexval times: complex * complex -> complexval divide: complex * complex -> complexval eq : complex * complex -> boolval real_part: complex -> realval imag_part: complex -> realend;[Hint: Given two complex numbers z1 = a+ ib and z2 = c+ id, the followinghold z1 + z2 = (a+ c) + i(b+ d)z1 � z2 = (a� c) + i(b� d)z1 � z2 = (ac� bd) + i(ad+ bc)z1=z2 = (ac+ bd) + i(bc� ad)c2 + d2]

74 CHAPTER 3. THE MODULES SYSTEMAbstractions are more
exible than abstract types in one sense, and abit less
exible in another. The
exibility comes from the fact that theabstraction needn't �t the \data type with operations" mold imposed byabstract types. For example, no type need be declared at all, or if so, itneedn't be a data type. Abstract types are marginally more
exible in thatthey are ordinary declaration forms, and may therefore appear anywherethat a declaration may appear, whereas abstractions are subject to the samelimitations as structure bindings: they may only appear at top level or withinan encapsulated declaration. This limitation does not appear to be undulyrestrictive as it is customary to de�ne all types at top level anyway.23.4 FunctorsML programs are hierarchical arrangements of interrelated structures. Func-tors, which are functions on structures, are used to manage the dynamics ofprogram development in ML. Functors play the role of a linking loader inmany programming languages: they are the means by which a program isassembled from its component parts.Functors are de�ned using functor bindings, which may only occur attop level. The syntax of a functor binding is similar to the clausal form offunction de�nition in the core language. Here is an example:- signature SIG =sigtype tval eq : t * t -> boolend;- functor F(P: SIG) : SIG =structtype t = P.t * P.tfun eq((x,y),(u,v)) = P.eq(x,u) andalso P.eq(y,v)end;> functor F(P: SIG): SIG2It is advisable to avoid abstype's in ML because they are being phased out in favorof abstractions.

3.4. FUNCTORS 75The signature SIG speci�es a type t with a binary relation eq. The functor Fde�nes a function that, given any structure matching signature SIG, returnsanother structure, which is required to match SIG as well. (Of course, theresult signature may, in general, di�er from the parameter signature.)Functors are applied to structures to yield structures.- structure S : SIG =structtype t = intval eq : t*t->bool = op =end;> structure S =structtype t = intval eq = fn : t*t->boolend- structure SS : SIG = F(S);> structure SS =structtype t = int * intval eq = fn : t * t -> boolendHere we have created a structure S that matches signature SIG. The functor F,when applied to structure S, builds another structure of the same signature,but with t being the type of pairs of integers, and the equality functionde�ned on these pairs. Notice how SS is built as a function of S by F.Functors enjoy a degree of polymorphism that stems from the fact thatsignature matching is de�ned to allow the structure to have more informationthan is required by the signature (which is then thrown away, as discussedabove). For example,- structure T : SIG =structtype t = string * intval eq : t * t -> bool = op =fun f(x:t)=(x,x)end;

76 CHAPTER 3. THE MODULES SYSTEM> structure T =structtype t = string * intval eq = fn : t * t -> boolend;- structure TT : SIG = F(T);> structure TT =structtype t = (string*int)*(string*int)val eq : t * t -> boolendAlthough functors are limited to a single argument, this is not a seriouslimitation, for several structures can be packaged into one as substructures,and then passed to a functor. In practice this is not much of an inconvenience,for it is usually the case that if one wants to pass several structures to afunctor, then they are so closely related as to be packaged together anyway.Functors are subject to a closure restriction similar to that for signatures:they may not have any free references to values, types, or exceptions in theenvironment (except for pervasive system primitives.) The functor bodymay freely refer to the parameters and their components (using quali�ednames), to locally-declared identi�ers, and to previously-declared functorsand signatures.Though it is perhaps the most common case, the body of a functor neednot be an encapsulated declaration; quali�ed names and functor applicationsare perfectly acceptable (but functors are not recursive!). Here are someexamples:- functor G(P: SIG): SIG = F(F(P));> functor G(P: SIG): SIG- functor I(P: SIG): SIG = P;> functor I(P: SIG): SIGIt is worth noting that the functor I is not the identity function, for if S isa structure matching SIG but with more components than are mentioned inSIG, then the result of the application F(S) will be the cut-down view of S,and not S itself. For example,

3.5. THE MODULES SYSTEM IN PRACTICE 77- structure S =structtype t = intval eq = op =fun f(x) = xend;> structure S =structtype t = intval eq = fn : int * int -> boolval f = fn : 'a -> 'aend- structure S' = I(S);> structure S' =structtype t = intval eq = fn : t * t -> boolendNotice that the component f of S is missing from the result of applying I toS.Exercise 3.4.1 Convert your implementation of sets using an ordered listrepresentation into a form where the equality and ordering functions are pro-vided as arguments to a set functor.This completes our introduction to the fundamental mechanisms of theML modules system. There is one very important idea still to be discussed,the sharing speci�cation. We defer considering sharing speci�cations untilwe have illustrated the use of functors in programming.3.5 The modules system in practiceIn this section we illustrate the use of the modules system in program de-velopment. We shall consider, in outline, the development of a parser thattranslates an input stream into an abstract syntax tree and records some in-formation about the symbols encountered into a symbol table. The program

78 CHAPTER 3. THE MODULES SYSTEMis divided into four units, one for the parser, one for the abstract syntax treemanagement routines, one for the symbol table, and one to manage symbols.Here are the signatures of these four units:- signature SYMBOL =sigtype symbolval mksymbol: string -> symbolval eqsymbol: symbol * symbol -> boolend;- signature ABSTSYNTAX =sigstructure Symbol : SYMBOLtype termval idname: term -> Symbol.symbolend;- signature SYMBOLTABLE =sigstructure Symbol : SYMBOLtype entrytype tableval mktable : unit -> tableval lookup : Symbol.symbol * table -> entryend;- signature PARSER =sigstructure AbstSyntax : ABSTSYNTAXstructure SymbolTable : SYMBOLTABLEval symtable : SymbolTable.tableval parse: string -> AbstSyntax.termend;Of course, these signatures are abbreviated and idealized, but it is hoped thatthey are su�ciently plausible to be convincing and informative. Please notethe hierarchical arrangement of these structures. Since the parser moduleuses both the abstract syntax module and the symbol table module in anessential way, it must include them as substructures. Similarly, both the

3.5. THE MODULES SYSTEM IN PRACTICE 79abstract syntax module and the symbol table module include the symbolmodule as substructures.Now let's consider how we might build a parser in this con�guration. For-getting about the algorithms and representations, we might think of writingdown a collection of structures such as the following:- structure Symbol : SYMBOL =structdatatype symbol = symbol of string * ...fun mksymbol(s) = symbol(s, ...)fun eqsymbol(sym1, sym2) = ...end;- structure AbstSyntax : ABSTSYNTAX =structstructure Symbol : SYMBOL = Symboldatatype term = ...fun idname(term) = ...end;- structure SymbolTable : SYMBOLTABLE =structstructure Symbol : SYMBOL = Symboltype entry = ...type table = ...fun mktable() = ...fun lookup(sym,table) = ...end;- structure Parser : PARSER =structstructure AbstSyntax : ABSTSYNTAX = AbstSyntaxstructure SymbolTable : SYMBOLTABLE = SymbolTableval symtable = SymbolTable.mktable();fun parse(str) =... SymbolTable.lookup(AbstSyntax.idname(t), symtable) ...end;Note that in the last line of Parser we apply SymbolTable.lookup to theresult of an application of AbstSyntax.idname. This is type correct only by

80 CHAPTER 3. THE MODULES SYSTEMvirtue of the fact that AbstSyntax and SymbolTable include the same struc-ture Symbol. Were there to be two structures matching signature SYMBOL,one bound into SymbolTable and the other bound into AbstSyntax, then thisline of code would not type check. Keep this fact in mind in what follows.Now this organization of our compiler seems to be OK, at least so faras the static structure of the system is concerned. But if you imagine thatthere are umpteen other structures around, each with a few thousand lines ofcode, then one can easily imagine that this approach would become somewhatunwieldy. Suppose that there is a bug in the symbol table code, which we�x, and now we would like to rebuild the system with the new symbol tablemodule installed. This requires us to recompile the above set of structureexpressions (along with all the others that are a�ected as a consequence) inorder to rebuild the system. Clearly some form of separate compilation andlinking facility is needed. What we are aiming at is to be able to recompileany one module in isolation from the others, and then relink the compiledforms into the desired static con�guration. Of course, this idea is not new;the point is to see how it's done in ML.The key is never to write down a structure explicitly, but rather to orga-nize the system as a set of functors, each taking its dependents as arguments(and taking no arguments if it has no dependents). Then to link the sys-tem, one merely applies the functors so as to construct the appropriate staticcon�guration. For our example, the functors will look like this:- functor SymbolFun(): SYMBOL =structdatatype symbol = symbol of string * ...fun mksymbol(s) = symbol(s, ...)fun eqsymbol(sym1, sym2) = ...end;- functor AbstSyntaxFun(Symbol: SYMBOL): ABSTSYNTAX =structstructure Symbol : SYMBOL = Symboldatatype term = ...fun idname(term) = ...end;- functor SymbolTableFun(Symbol: SYMBOL): SYMBOLTABLE =struct

3.5. THE MODULES SYSTEM IN PRACTICE 81structure Symbol : SYMBOL = Symboltype entry = ...type table = ...fun mktable() = ...fun lookup(sym,table) = ...end;- signature PARSER_PIECES =sigstructure SymbolTable : SYMBOLTABLEstructure AbstSyntax : ABSTSYNTAXend;- functor ParserFun(Pieces: PARSER_PIECES): PARSER =structstructure AbstSyntax : ABSTSYNTAX = Pieces.AbstSyntaxstructure SymbolTable : SYMBOLTABLE = Pieces.SymbolTableval symtable = SymbolTable.mktable();fun parse(str) =... SymbolTable.lookup(AbstSyntax.idname(t), symtable) ...end;The signature PARSER PIECES is the signature of the two components onwhich the parser depends, the symbol table and the abstract syntax. Thefunctor ParserFun depends on such a pair in order to construct a parser. Thefunctor SymbolFun takes no arguments since it has no dependent structuresin our setup.The system is built up from these functors by the following sequence ofdeclarations. You should be able to convince yourself that they result in thesame static con�guration that we de�ned above.- structure Symbol : SYMBOL = SymbolFun();- structure Pieces : PARSER_PIECES =structstructure SymbolTable : SYMBOLTABLE = SymbolTableFun(Symbol)structure AbstSyntax : ABSTSYNTAX = AbstSyntaxFun(Symbol)end;- structure Parser : PARSER = ParserFun(Pieces);We have glossed over a problem with ParserFun, however. Recall that wesaid that the function parse de�ned in Parser is type correct only by virtue

82 CHAPTER 3. THE MODULES SYSTEMof the fact that SymbolTable and AbstSyntax have the same substructureSymbol, and hence the same type of symbols. Now in ParserFun, the functionparse knows only the signatures of these two structures, and not that theyare implemented in a compatible way. Therefore the compiler is forced toreject ParserFun, and our policy of using functors to support modularityappears to be in trouble.There is a way around this, called the sharing speci�cation. The idea isto attach a set of equations to the signature PARSER PIECES that guaranteesthat only a compatible pair of symbol table and abstract syntax structurescan be passed to ParserFun. Here is a revised de�nition of PARSER PIECESthat expresses the requisite sharing information:- signature PARSER_PIECES =sigstructure SymbolTable : SYMBOLTABLEstructure AbstSyntax : ABSTSYNTAXsharing SymbolTable.Symbol = AbstSyntax.Symbolend;The sharing clause ensures that only compatible pairs of symbol table andabstract syntax modules may be packaged together as PARSER PIECES (where\compatible" means \having the same Symbol module".) Using this revisedsignature, the declaration of ParserFun is now legal, and can be used toconstruct the con�guration of structures that we described above.There are, in general, two forms of sharing speci�cation, one for types andone for structures. In the above example we used a structure sharing speci�-cation to insist that two components of the parameters be equal structures.Two structures are equal if and only if they result from the same evalua-tion of the same struct expression or functor application. For example, thefollowing attempt to construct an argument for ParserFun fails because thesharing speci�cation is not satis�ed:- structure Pieces : PARSER_PIECES =structstructure SymbolTable = SymbolTableFun(SymbolFun())structure AbstSyntax = AbstSyntaxFun(SymbolFun())end;

3.5. THE MODULES SYSTEM IN PRACTICE 83The problem is that each application of SymbolFun yields a distinct structure,and therefore SymbolTable and AbstSyntax fail the compatibility check.The second form of sharing speci�cation is between types. For example,the following version of PARSER PIECES might su�ce if the only importantpoint is that the type of symbols be the same in both the symbol tablemodule and the abstract syntax module:- signature PARSER_PIECES =sigstructure SymbolTable : SYMBOLTABLEstructure AbstSyntax : ABSTSYNTAXsharing SymbolTable.Symbol.symbol = AbstSyntax.Symbol.symbolend;Type equality is similar to structure equality in that two data types are equalif and only if they result from the same evaluation of the same declaration.So, for example, if we have two syntactically identical data type declarations,the types they de�ne are distinct.Returning to our motivating example, suppose that we wish to �x a bugin the symbol manipulation routines. How, then, is our program to be re-constructed to re
ect the change? First, we �x the bug in SymbolFun, andre-evaluate the functor binding for SymbolFun. Then we repeat the abovesequence of functor applications in order to rebuild the system with the newsymbol routines. The other functors needn't be recompiled, only reapplied.

Chapter 4Input-OutputML provides a small collection of input/output primitives for performing sim-ple character I/O to �les and terminals. The fundamental notion in the MLI/O system is the character stream, a �nite or in�nite sequence of characters.There are two types of stream, instream for input streams, and outstreamfor output streams. An input stream receives its characters from a producer,typically a terminal or disk �le, and an output stream sends its charactersto a consumer, also often a terminal or disk �le. A stream is initialized byconnecting it to a producer or consumer. Input streams may or may nothave a de�nite end, but in the case that they do, ML provides primitives fordetecting this condition.The fundamental I/O primitives are packaged into a structure BasicIOwith signature BASICIO, de�ned as follows:- signature BASICIO = sig(* Types and exceptions *)type instreamtype outstreamexception io_failure: string(* Standard input and output streams *)val std_in: instreamval std_out: outstream(* Stream creation *) 84

85val open_in: string -> instreamval open_out: string -> outstream(* Operations on input streams *)val input: instream * int -> stringval lookahead: instream -> stringval close_in: instream -> unitval end_of_stream: instream -> bool(* Operations on output streams *)val output: outstream * string -> unitval close_out: outstream -> unitend;BasicIO is implicitly open'd by the ML system, so these identi�ers may beused without a quali�ed name.The type instream is the type of input streams and the type outstreamis the type of output streams. The exception io failure is used to representall of the errors that may arise in the course of performing I/O. The valueassociated with this exception is a string representing the type of failure,typically some form of error message.The instream std in and the outstream std out are automatically con-nected to the user's terminal1The open in and open out primitives are used to associate a disk �lewith a stream. The expression open in(s) creates a new instream whoseproducer is the �le named s and returns that stream as value. If the �lenamed by s does not exist, the exception io failure is raised with value"Cannot open "^s. Similarly, open out(s) creates a new outstreamwhoseconsumer is the �le s, and returns that stream.The input primitive is used to read characters from a stream. Evaluationof input(s,n) causes the removal of n characters from the input stream s.If fewer than n characters are currently available, then the ML system willwait until they become available from the producer associated with s.2 If the1Under UNIX, they are actually connected to the ML process's standard input andstandard output �les, which may or may not be a terminal.2The exact de�nition of \available" is implementation-dependent. For instance, oper-ating systems typically bu�er terminal input on a line-by-line basis so that no characters

86 CHAPTER 4. INPUT-OUTPUTend of stream is reached while processing an input, fewer than n charactersmay be returned. In particular, input from a closed stream returns the nullstring. The function lookahead(s) returns the next character on instreams without removing it from the stream. Input streams are terminated by theclose in operation. It is not ordinarily necessary to close input streams, butin certain cases it is desirable to do so due to host system limitations. Theend of an input stream is detected by end of stream, a derived form that isde�ned as follows:- val end_of_stream(s) = (lookahead(s)="")Characters are written to an outstream with the output primitive. Thestring argument consists of the characters to be written to the given outstream.The function close out is used to terminate an output stream. Any furtherattempts to output to a closed stream cause io failure to be raised withvalue "Output stream is closed".In addition to the basic set of I/O primitives de�ned above, ML alsoprovides a few extended operations. One is called input line, of typeinstream->string, which reads an entire line from the given input stream.A line is de�ned to be a sequence of characters terminated by a newline char-acter, \n. Another is the function use of type string list->unit, whichtakes a list of �le names, which are to be loaded into the ML system asthough they had been typed at top level. This primitive is very useful forinteracting with the host system, particularly for large programs.Exercise 4.0.1 Modify your towers of hanoi program so that it prints outthe sequence of moves.Exercise 4.0.2 Write a function to print out your solutions to the queensproblem in the form of a chess board.are available until an entire line has been typed.

Bibliography[1] Harold Abelson and Gerald Sussman, Structure and Interpretation ofComputer Programs, The MIT Press, 1985.[2] Rod Burstall, David MacQueen, and Donald Sannella, HOPE: An Ex-perimental Applicative Language, Edinburgh University Internal ReportCSR-62-80, 1980.[3] Luca Cardelli, ML under UNIX, AT&T Bell Laboratories, 1984.[4] Michael Gordon, Robin Milner, and Christopher Wadsworth, EdinburghLCF, Springer{Verlag Lecture Notes in Computer Science, vol. 78, 1979.[5] Robert Harper, David MacQueen, and Robin Milner, Standard ML, Ed-inburgh University Internal Report ECS{LFCS{86-2, March, 1986.[6] David MacQueen, Modules for Standard ML, in [5].[7] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Stan-dard ML. MIT Press, 1990.
87

Appendix AAnswersAnswer 2.3.1:1. Unbound value identifier: x2. > val x = 1: int> val y = 3: int> val z = 2: int3. > 3: intAnswer 2.4.1:The computer would match hd::tl::nil against"Eat"::"the"::"walnut"::nil. The lists are of di�erent lengthso the pattern matching would fail.Answer 2.4.2:1. { b=x, ... }2. _::_::x::_ or [_, _, x, _, _]3. [_, (x,_)]Answer 2.5.1:local val pi = 3.141592654in fun circumference r = 2.0 * pi * rfun area r = pi * r * rend 88

89Answer 2.5.2:fun abs x = if x < 0.0 then ~x else xAnswer 2.5.3:To evaluate fact(n), the systemmust evaluate newif(n=0,1,fact(n-1)).The arguments to this function must be evaluated before the callto the function. This involves evaluating fact(n-1), even whenn<= 0. The function will therefore loop.Answer 2.5.5:This is an ine�cient de�nition of a function to reverse the orderof the elements in a list.Answer 2.5.6:fun isperfect n =let fun addfactors(1) = 1| addfactors(m) =if n mod m = 0then m + addfactors(m-1) else addfactors(m-1)in (n < 2) orelse (addfactors(n div 2) = n) end;Answer 2.5.7:fun cons h t = h::tfun powerset [] = [[]]| powerset(h::t) =let val pst = powerset t in (map (cons h) pst) @ pst end;Answer 2.5.8:fun cc(0,_) = 1| cc(_,[]) = 0| cc(amount, kinds as (h::t)) =if amount < 0 then 0else cc(amount-h,kinds) + cc(amount, t);fun count_change coins amount = cc(amount, coins);

90 APPENDIX A. ANSWERSAnswer 2.5.9:fun nth(0,l) = l | nth(n,h::t) = nth(n-1,t);fun count_change coins sum =let fun initial_table [] = [[0]]| initial_table (h::t) = []::(initial_table t)fun count(amount,table) =let fun count_using([],l) = l| count_using(h::t,h1::t1) =let val t1' as ((c::_)::_) =count_using(t,t1)val diff = amount - hval cnt = c + if diff < 0 then 0else if diff = 0 then 1else hd(nth(h-1,h1))in (cnt::h1)::t1'endin if amount > sum then hd(hd table)else count(amount+1,count_using(coins,table))endin count(0, initial_table coins) end;Answer 2.5.10:localfun move_disk(from, to) = (from, to);fun transfer(from, to, spare, 1) = [move_disk(from, to)]| transfer(from, to, spare, n) =transfer(from, spare, to, n-1)@ [move_disk(from, to)]@ transfer(spare, to, from, n-1)infun tower_of_hanoi(n) = transfer("A","B","C",n)end;

91An alternative solution, that explicitlymodels the disks, and checks for illegalmoves, could be written as follows.localfun incl(m,n) = if m>n then [] else m::incl(m+1,n)fun move_disk((f,fh::fl), (t,[]), spare) =((f,fl), (t,[fh]), spare)| move_disk((f,fh::fl), (t,tl as (th::tt)), spare) =if (fh: int) > th then error "Illegal move"else ((f,fl), (t,fh::tl), spare);fun transfer(from, to, spare, 1) = move_disk(from, to, spare)| transfer(from, to, spare, n) =let val (f1,s1,t1) = transfer(from, spare, to, n-1)val (f2,t2,s2) = move_disk(f1, t1, s1)val (s3,t3,f3) = transfer(s2, t2, f2, n-1)in (f3,t3,s3) endinfun tower_of_hanoi(n) =transfer(("A",incl(1,n)),("B",[]),("C",[]),n)end;Answer 2.7.1:fun samefrontier(empty,empty) = true| samefrontier(leaf x, leaf y) = x = y| samefrontier(node(empty,t1), node(empty,t2)) =samefrontier(t1,t2)| samefrontier(node(leaf x,t1), node(leaf y,t2)) =x = y andalso samefrontier(t1,t2)| samefrontier(t1 as node _, t2 as node _) =samefrontier(adjust t1, adjust t2)| samefrontier(_,_) = falseand adjust(x as node(empty,_)) = x| adjust(x as node(leaf _,_)) = x| adjust(node(node(t1,t2),t3)) = adjust(node(t1,node(t2,t3)));

92 APPENDIX A. ANSWERSAn alternative solution, using exceptions (section 2.8) is given below.fun samefrontier(tree1,tree2) =let exception samefringe : unitfun check_el(empty, empty, rest_t2) = rest_t2| check_el(leaf x, leaf y, rest_t2) =if x = y then rest_t2 else raise samefringe| check_el(el, node(l,r), rest_t2) =check_el(el, l, r::rest_t2)| check_el(_, _, _) = raise samefringefun check(_, []) = raise samefringe| check(empty, tree2) =check_el(empty, hd tree2, tl tree2)| check(l as leaf(el), tree2) =check_el(l, hd tree2, tl tree2)| check(node(t1,t2), tree2) =check(t2, check(t1, tree2))in null(check(tree1,[tree2])) handle samefringe => falseend;Answer 2.7.2:abstype 'a set = set of 'a listwith val emptyset = set []fun singleton e = set [e]fun union(set l1, set l2) = set(l1@l2)fun member(e, set []) = false| member(e, set (h::t)) =(e = h) orelse member(e, set t)fun intersection(set [], s2) = set []| intersection(set(h::t), s2) =let val tset as (set tl) = intersection(set t, s2)in if member(h,s2) then set(h::tl) else tset endend;Answer 2.7.3:abstype 'a set = set of ('a list *

93{ eq: 'a * 'a -> bool,lt: 'a * 'a -> bool })with fun emptyset ops = set([], ops)fun singleton(e, ops) = set([e], ops)fun member(e, set (l,{eq,lt})) =let fun find [] = false| find (h::t) =if eq(e, h) then trueelse if lt(e, h) then falseelse find(t)in find l endfun union(set(l,ops as {eq,lt}), set(l',_)) =let fun merge([],l) = l| merge(l,[]) = l| merge(l1 as (h1::t1), l2 as (h2::t2)) =if eq(h1,h2) then h1::merge(t1,t2)else if lt(h1,h2) then h1::merge(t1,l2)else h2::merge(l1,t2)in set(merge(l,l'),ops) endfun intersect(set(l,ops as {eq,lt}), set(l',_)) =let fun inter([],l) = []| inter(l,[]) = []| inter(l1 as (h1::t1), l2 as (h2::t2)) =if eq(h1,h2) then h1::inter(t1,t2)else if lt(h1,h2) then inter(t1,l2)else inter(l1,t2)in set(inter(l,l'),ops) endend;Answer 2.8.1:1. The exception bound to the outer exn is distinct from thatbound to the inner exn; thus the exception raised by f(200),

94 APPENDIX A. ANSWERSwith excepted value 200, could only be handled by a han-dler within the scope of the inner exception declaration - itwill not be handled by the handler in the program, whichexpects a boolean value. So this exception will be reportedat top level. This would apply even if the outer exceptiondeclaration were also of type int; the two exceptions boundto exn would still be distinct.2. If p(v) is false but q(v) is true, the recursive call will evalu-ate f(b(v)). Then, if both p(b(v)) and q(b(v)) are false, thisevaluation will raise an exn exception with excepted valued(b(v)). But this packet will not be handled, since the ex-ception of the packet is that which is bound to exn by theinner - not outer - evaluation of the exception declaration.Answer 2.8.2:fun threat((x:int,y), (x',y')) =(x = x')orelse (y = y')orelse (x+y = x'+y')orelse (x-y = x'-y')fun conflict(pos, []) = false| conflict(pos, h::t) = threat(pos,h) orelse conflict(pos,t);exception conflict;fun addqueen(i,n,place) =let fun tryqueen(j) =(if conflict((i,j), place) then raise conflictelse if i=n then (i,j)::placeelse addqueen(i+1,n,(i,j)::place))handle conflict =>if j = n then raise conflict else tryqueen(j+1)in tryqueen(1) end;fun queens(n) = addqueen(1, n, [])

95Answer 2.8.3:exception conflict: ((int * int) list) list;fun addqueen(i,n,place,places) =let fun tryqueen(j, places) =(if conflict((i,j), place)then raise conflict with placeselse if i=nthen raise conflict with ((i,j)::place)::placeselse addqueen(i+1,n,(i,j)::place,places))handle conflict with newplaces =>if j = n then raise conflict with newplaceselse tryqueen(j+1, newplaces)in tryqueen(1,places) end;fun allqueens(n) =addqueen(1,n,[],[]) handle conflict with places => places;Answer 2.9.1:val primes =let fun nextprime(n,l) =let fun check(n,[]) = n| check(n,h::t) =if (n mod h) = 0 then check(n+1,l)else check(n,t)in check(n,l) endfun primstream (n,l) =mkstream(fn () => let val n' = nextprime(n,l)in (n', primstream(n'+1,n'::l)) end)in primstream(2,[]) end;Answer 2.9.2:abstype 'a stream = stream of (unit -> ('a * 'a stream)) refwith fun next(stream f) =let val res = (!f)() in (f := fn () => res; res) endfun mkstream f = stream(ref f)end;

96 APPENDIX A. ANSWERSAn alternative solution, that is more verbose but perhaps clearer, is givenbelow.abstype 'a stream = stream of 'a streamelmt refand 'a streamelmt = uneval of (unit -> ('a * 'a stream))| eval of 'a * 'a streamwith fun next(stream(r as ref(uneval(f)))) =let val res = f() in (r := eval res; res) end| next(stream(ref(eval(r)))) = rfun mkstream f = stream(ref(uneval f))end;Answer 2.9.3:abstype 'a stream = stream of (unit -> ('a * 'a stream)) refwith local exception endofstream infun next(stream f) =let val res = (!f)()in (f := fn () => res; res)end fun mkstream f =stream(ref f)fun emptystream() =stream(ref(fn () => raise endofstream))fun endofstream(s) =(next s; false) handle endofstream => trueendend;Answer 3.2.1:structure INTORD: ORD =structtype t = intval le: int * int -> bool = op <endstructure RSORD: ORD =struct

97type t = real * stringfun le((r1:real, s1:string), (r2,s2)) =(r1 < r2) orelse ((r1 = r2) andalso (s1 < s2))endAnswer 3.2.2:The signature requires the type of n to be an 'a list, i.e. if astructure Tmatches SIG, then true::(T.n) should be legitimate.This cannot be the case if we were allowed to supply a value forn with a more speci�c type such as int list. Therefore thedeclaration is disallowed.Answer 3.2.3:sig type 'a t val x: bool * int endandsig type 'a t val x: bool t endAnswer 3.2.4:Only sig type t val f: t -> t end satis�es the signatureclosure rule (the others contain free references to the structureA).Answer 3.2.5:signature STACK =sigdatatype 'a stack = nilstack | push of 'a * 'a stackexception pop: unit and top: unitval empty: 'a stack -> booland pop: 'a stack -> 'a stackand top: 'a stack -> 'aendstructure Stack: STACK =struct

98 APPENDIX A. ANSWERSdatatype 'a stack = nilstack | push of 'a * 'a stackexception pop: unit and top: unitfun empty(nilstack) = true | empty _ = falsefun pop(push(_,s)) = s | pop _ = raise popfun top(push(x,_)) = x | top _ = raise topendAnswer 3.2.6:structure Exp: EXP =structdatatype id = Id of stringdatatype exp = Var of id| App of id * (exp list)endsignature SUBST =sigstructure E: EXPtype substval subst: (E.id * E.exp) list -> substval lookup: E.id * subst -> E.expval substitute: subst -> E.exp -> E.expendstructure Subst: SUBST =structstructure E = Exptype subst = (E.id * E.exp) listfun subst(x) = xfun lookup(id, []) = E.Var id| lookup(id, (id',e)::l) =if id = id' then e else lookup(id,l)fun substitute s (E.Var id) = lookup(id,s)| substitute s (E.App(id,args)) =E.App(id, map (substitute s) args)endAnswer 3.3.1:

99abstraction Rect: COMPLEX =structdatatype complex = rect of real * realexception divide : unitfun rectangular { real, imag } = rect(real, imag)fun plus(rect(a,b), rect(c,d)) = rect(a+c,b+d)fun minus(rect(a,b), rect(c,d)) = rect(a-c,b-d)fun times(rect(a,b), rect(c,d)) = rect(a*c - b*d, a*d + b*c)fun divide(rect(a,b), rect(c,d)) =let val cd2 = c*c + d*din if cd2 = 0.0then raise divideelse rect((a*c + b*d)/cd2, (b*c - a*d)/cd2) endfun eq(rect(a,b), rect(c,d)) = (a=c) andalso (b=d)fun real_part(rect(a,_)) = afun imag_part(rect(_,b)) = bend;Answer 3.4.1:signature ORD =sigtype elemval eq: elem * elem -> boolval le: elem * elem -> boolendsignature SET =sigtype setstructure O: ORDval emptyset: setval singleton: O.elem -> setval member: O.elem * set -> boolval union: set * set -> setval intersect: set * set -> setend

100 APPENDIX A. ANSWERSfunctor Set(O: ORD): SET =structdatatype set = set of O.elem liststructure O = Oval emptyset = set []fun singleton e = set [e]fun member(e, set l) =let fun find [] = false| find (h::t) =if O.eq(e, h) then trueelse if O.lt(e, h) then falseelse find(t)in find l endfun union(set l, set l') =let fun merge([],l) = l| merge(l,[]) = l| merge(l1 as (h1::t1), l2 as (h2::t2)) =if O.eq(h1,h2) then h1::merge(t1,t2)else if O.lt(h1,h2) then h1::merge(t1,l2)else h2::merge(l1,t2)in set(merge(l,l')) endfun intersect(set l, set l') =let fun inter([],l) = []| inter(l,[]) = []| inter(l1 as (h1::t1), l2 as (h2::t2)) =if O.eq(h1,h2) then h1::inter(t1,t2)else if O.lt(h1,h2) then inter(t1,l2)else inter(l1,t2)in set(inter(l,l')) endend;Answer 4.0.1:localfun incl(m,n) = if m>n then [] else m::incl(m+1,n)

101fun move_disk((f,fh::fl), (t,tl), spare) =if not(null tl) andalso (fh: int) > hd tlthen error "Illegal move"else(output(std_out,"Move " ^ (makestring fh) ^" from " ^ f ^ " to " ^ t ^ "\n");((f,fl), (t,fh::tl), spare));fun transfer(from, to, spare, 1) = move_disk(from, to, spare)| transfer(from, to, spare, n) =let val (f1,s1,t1) = transfer(from, spare, to, n-1)val (f2,t2,s2) = move_disk(f1, t1, s1)val (s3,t3,f3) = transfer(s2, t2, f2, n-1)in (f3,t3,s3) endinfun tower_of_hanoi(n) =(transfer(("A",incl(1,n)),("B",[]),("C",[]),n); ())end;Answer 4.0.2:fun printboard(place,n,s) =let fun present(pos: (int*int), []) = false| present(pos, h::t) = (pos=h) orelse present(pos,t)fun printcolumn(i,j) =if j > n then ()else(output(s,if present((i,j), place)then " Q " else " . ");printcolumn(i,j+1))fun printrow(i) =if i > n then ()else (printcolumn(i,1);output(s,"\n");printrow(i+1))

102 APPENDIX A. ANSWERSin (printrow(1); output(s,"\n")) end;

