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1 Floating point numbers

An n-digit floating point number in base β has the form

x = ±(0.d1d2 · · · dn)β × βe

where 0.d1d2 · · · dn is a β-fraction called the mantissa and e is an integer
called the exponent. Such a floating point number is called normalised if
d1 6= 0, or else, d1 = d2 = · · · = dn =. The exponent e is limited to a range

m < e < M

Usually, m = −M .

1.1 Rounding, chopping, overflow and underflow

There are two common ways of translating a given real number x in to an
n β-digit floating point number fl(x) - rounding and chopping.

For example, if two decimal digit floating point numbers are used

fl(2/3) =

{
(0.67)× 100 rounded
(0.66)× 100 chopped

and

fl(−838) =

{
−(0.84)× 103 rounded
−(0.83)× 103 chopped

The conversion is undefined if |x| ≥ βM (overflow) or 0 < |x| ≥ βm−n

(underflow), where m and M are the bounds on the exponent.
The difference between x and fl(x) is called the round-off error. If we

write
fl(x) = x(1 + δ)
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then it is possible to bound δ independently of x. It is not difficult to see
that

|δ| < 1
2β

1−n in rounding
−β1−n < δ ≤ 0 in chopping

The maximum possible value of |δ| is often called the unit roundoff or
machine epsilon and is denoted by u. It is the smallest machine number
such that

fl(1 + u) > 1

1.2 Floating point operations

If � denotes one of the arithmetic operations (addition, subtraction, mul-
tiplication or division) and �∗ represents the floating point version of the
same operation, then, usually

x� y 6= x�∗ y

However, it is reasonable to assume (actually the computer arithmetic is so
constructed) that

x�∗ y = fl(x� y) = (x� y)(1 + δ)

for some δ, with |δ| < u.

1.3 Error analysis

Consider the computation of f(x) = x2
n

at a point x0 by n squaring:

x1 = x20, x2 = x21, . . . , xn = x2n−1

with fl(x0) = x0.
In floating point arithmetic, we compute:

x̂1 = x20(1 + δ1), x̂2 = x̂21(1 + δ2), . . . , x̂n = x̂2n−1(1 + δn)

with |δi| ≤ u, ∀i. The computed answer is, therefore,

x̂n = x2
n

0 (1 + δ1)
2n−1 · · · (1 + δ2n−1)(1 + δn)

Now, if |δ1|, |δ2|, . . . , |δr| ≤ u, then there exist δ and η with |δ|, |η| ≤ u, such
that

(1 + δ1)(1 + δ1) . . . (1 + δr) = (1 + δ)r = (1 + η)r+1
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Thus,
x̂n = x2

n

0 (1 + δ)2
n

= f(x0(1 + δ))

for some δ with δ ≤ u. In other words, the computed value x̂n is the exact
answer for a perturbed input x = x0(1 + δ).

The above is an example of backward error analysis.

1.4 Loss of significance

If x∗ is an approximation to x, then the error in x∗ is x − x∗. The relative
error in x∗, as an approximation to x is the number

(x− x∗)/x

Every floating point operation in a computational process may give an error
which, once generated, may then be amplified or reduced in subsequent
computations.

One of the most common (and often avoidable) ways of increasing the
importance of an error is commonly called loss of significant digits. x∗

approximates x to r significant β-digits provided the absolute error |x− x∗|
is at most 1

2 in the rth significant β-digit of x, i.e.,

|x− x∗| ≤ 1

2
βs−r+1

with s the largest integer such that βs ≤ |x|. For example, x∗ = 3 agrees
with x = π to one significant decimal digit, where as x∗ = 22

7 = 3.1428 · · ·
is correct to three significant digits.

Suppose we are to calculate z = x − y and we have approximations x∗

and y∗ for x and y, respectively, each of which is good to r digits. Then,
z∗ = x∗ − y∗ may not be good to r digits. For example, if

x∗ = (0.76545421)× 101 y∗ = (0.76544200)× 101

are each correct to seven decimal digits, then their exact difference

z∗ = x∗ − y∗ = (0.12210000)× 10−3

is good only to three digits as an approximation to x, since the fourth digit
of z∗ is derived from the eighth digits of x∗ and y∗, both possibly in error.
Hence, the relative error in z∗ is possibly 10,000 times the relative error in
x∗ or y∗.
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Such errors can be avoided by anticipating their occurrence. For example
the calculation of

f(x) = 1− cosx

is prone to loss of significant digits for x near 0, however, the alternate
representation

f(x) =
sinx2

1 + cosx

can be evaluated quite accurately for small values of x and is, on the other
hand, problematic near x = π.

1.5 Condition and instability

2 Problems

2.1 Discretization

1. Derive the trapezoidal rule for numerical integration which goes some-
what like: ∫ b

a
f(x)dx '

n−1∑
k=0

1

2
h[f(xk) + f(xk+1)]

for discrete values of xk in interval [a, b]. Compute
∫ π
0 sin(x)dx using

trapezoidal rule (use h = 0.1 and h = 0.01) and compare with the
exact result.

2. Consider the differential equation

y′(x) = 2xy(x)− 2x2 + 1, 0 ≤ x ≤ 1
y(0) = 1

(a) Show/verify that the exact solution is the function y(x) = ex
2
+x.

(b) If we approximate the derivative operation with a divided differ-
ence

y′(xk) = (yk+1 − yk)/(xk+1 − xk)

then show that solution can be approximated by the iteration

yk+1 = yk + h(2xkyk − 2x2k + 1), k = 0, 1, . . . , n
y0 = 1

where xk = kh, k = 0, 1, . . . , n and h = 1/n.
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(c) Use h = 0.1 to solve the differential equation numerically and
compare (plot) your answers with the exact solution.

3. (a) Derive the Newton’s iteration for computing
√

2 given by

xk+1 = 1
2 [xk + (2/xk)], k = 0, 1, . . .

x0 = 1

(b) Show the Newton’s iteration takes O(log n) steps to obtain n
decimal digits of accuracy.

(c) Numerically compute
√

2 using Newton’s iteration and verify the
rate of convergence.

4. Which of the following are rounding errors and which are truncation
errors (please check out the definitions from Wikipedia)?

(a) Replace sin(x) by x− (x3/3!) + (x5)/5! . . .

(b) Use 3.1415926536 for π.

(c) Use the value x10 for
√

2, where xk is given by Newton’s iteration
above.

(d) Divide 1.0 by 3.0 and call the result 0.3333.

2.2 Unstable and Ill-conditioned problems

1. Consider the differential equation

y′(x) = (2/π)xy(y − π), 0 ≤ x ≤ 10
y(0) = y0

(a) Show/verify that the exact solution to this equation is

y(x) = πy0/[y0 + (π − y0)ex
2
]

(b) Taking y0 = π compute the solution for

i. an 8 digit rounded approximation for π

ii. a 9 digit rounded approximation for π

What can you say about the results?

2. Solve the system

2x − 4y = 1
−2.998x + 6.001y = 2
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using any method you know. Compare the solution with the solution to
the system obtained by changing the last equation to −2.998x+6y = 2.
Is this problem stable?

3. Examine the stability of the equation

x3 − 102x2 + 201x− 100 = 0

which has a solution x∗ = 1. Change one of the coefficients (say 201
to 200) and show that x∗ = 1 is no longer even close to a solution.

2.3 Unstable methods

1. Consider the quadratic

ax2 + bx+ c = 0, a 6= 0

Consider a = 1, b = 1000.01, c = −2.5245315. Suppose that
√
b2 − 4ac

is computed correctly to 8 digits, what is the number of digits of
accuracy in x? What is the source of the error?

2. Show that the solution to the quadratic can be re-written as

x = −2c/(b2 +
√
b2 − 4ac)

Write a program to evaluate x for several values of a, b and c (with
b large and positive and a, c of moderate size). Compare the results
obtained with the usual formula and the formula above.

3. Consider the problem of determining the value of the integral∫ 1

0
x20ex−1dx

If we let

Ik =

∫ 1

0
xkex−1dx

Then, integration by parts gives us (please verify)

Ik = 1− kIk−1
I0 =

∫ 1
0 e

x−1dx = 1− (1/e)

Thus we can compute I20 by successively computing I1, I2, . . .. Com-
pute the (k, Ik) table with a program, plot, and see if it makes sense.
What are the errors due to?
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Compare the results with that obtained using the following recursion
(which you can easily! derive by integrating by parts twice).

Ik = (1/π)− [k(k − 1)/π2]Ik−2, k = 2, 4, 6, . . .

4. The standard deviation of a set of numbers x1, x2, . . . , xn is defined as

s = (1/n)
n∑
i=1

(xi − x̄)2

where x̄ is the average. An alternative formula that is often used is

s = (1/n)
n∑
i=1

x2i − x̄2

(a) Discuss the instability of the second formula for the case where
the xi are all very close to each other.

(b) Observe that s should always be positive. Write a small program
to evaluate the two formulas and find values of x1, . . . , x10 for
which the second one gives negative results.
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