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Abstract

The following pages contain material related to counting techniques and basic prob-
ability that is often assumed to be background knowledge for courses in Computer
Science Theory and Algorithms. This was part of a discrete mathematics course that
I had taught to sophomore CS majors. The notes are preliminary and likely to contain
some errors, in particular typographic.



Chapter 1

Preliminaries

A set is a collection of objects. The objects of a set are called members or elements.
Two sets are equal iff they have the same members. Usually we do not count repeated
elements more than once - when we do they are called multisets. Sets may contain
finite or infinite number of elements. A set that does not have any element is called
empty and is denoted by φ. Some common set identities are

• Idempotency

• Commutativity

• Associativity

• Distributivity

• Absorption

• De Morgan’s Laws

The power set of a set A is the collection of all distinct subsets of A (including
phi) and is denoted by 2A. A partition of A is a collection of subsets A1, A2 . . . such
that ∪iAi = A and Ai ∩ Aj = Φ for all i 6= j.

1.1 Relations and Functions

A Cartesian product of two sets A and B denoted by A× B is the set of all ordered
pairs (a, b) with a ∈ A and b ∈ B. A binary relation R is a subset of A × B.
The definitions for Cartesian product and relations have natural extensions to k-fold
Cartesian product and k-ary relation.
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Definition 1.1.1 A relation R ⊂ A × A is reflexive if for all a ∈ A, (a, a) ∈ R.
A relation is symmetric if (b, a) ∈ R whenever (a, b) ∈ R. A relation is anti-
symmetric if (b, a) ∈ R then (a, b) /∈ R. A relation is transitive if (a, c) ∈ R
whenever (a, b) ∈ R and (b, c) ∈ R.

Definition 1.1.2 A binary relation that is reflexive, symmetric and transitive is
called a equivalence relation.
A binary relation that is reflexive, antisymmetric and transitive is called a partial
order.
A partial order is a total order if for every pair of distinct elements a, b, either (a, b)
or (b, a) belongs to the partial order.

We often use the notation a ∼ b to denote that a, b are related under the equiv-
alence relation ∼. For a ∈ S, the set of elements [a] = {x ∈ S|x ∼ a} is called the
equivalence class of a.

Theorem 1.1.3 The equivalence classes of an equivalence relation on a set S con-
stitute a partition of S.

Proof: Since a ∼ a, a ∈ [a]. If [a] and [b] are two distinct equivalence classes where
b /∈ [a], we must show that [a]∩[b] = φ. Suppose c ∈ [a]∩[b], then a ∼ c and c ∼ b and
therefore from transitivity a ∼ b. This implies that b ∈ [a] which is a contradiction.
✷

A function f is defined from a set of objects called domain to another set called range
or co-domain. Intuitively, f associates for each element of the domain a unique
element of range. Often we represent a function by f : A → B and f(a) to denote
the element (of the range) to which a ∈ A is mapped by f . Sometimes f(a) is called
the image of a (under f) or a as the inverse image of f . The definition of a function
also naturally extends to k-ary functions, i.e., f has k arguments. Another view is to
think of A as a set of ordered k tuples.

Definition 1.1.4 A function f : A → B is onto if each element of B is an image
of at least one element of A. f is one-to-one if for two distinct a, a′, f(a) 6= f(a′).
A function f is a bijection if it is one-to-one and onto.

Bijections are especially useful for counting problems, For example, if we can find
a bijection between (finite) sets A and B, then the number of elements in A equal
that in B. The use of one-to-one functions are even more useful for comparing the
number of elements in infinite sets.
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1.2 Counting and comparing infinite sets

The motivating question for this topic is ”Are there more reals numbers than rationals
?” Both sets R (set of Real numbers) and Q (the set of rationals are infinite sets, so
how can we distinguish between the sizes of these sets. Similarly, we may want to
find the compare the set of integers with rationals.

Definition 1.2.1 Two sets A and B are called cardinally equivalent, iff there is a
bijective function f : A → B and this will be denoted by #(A) = #(B).

Example 1.2.2 : Let A be a finite non-empty set, then there exists a unique
integer n such that A is cardinally equivalent to {1, 2, . . . n}. Then we say that A has
n elements.
Example1.2.3 : Let E be the set of even positive integers. Then #(E) = #(Z+)
where Z+ is the set of all positive integers using the function f : #(E) → #(Z+)
where f(n) = n/2. This function is bijective, so intuitively the number of integers is
the same as the number of even integers.

Definition 1.2.4 A set S is countably infinite iff #(S) = #(Z+). A set is countable
iff S is finite or countably finite.

Theorem 1.2.5 Every subset of a countable set is countable. A countable union of
a countable set is countable.

Proof: For the first part, renumber the integers whose images are in the subset (i.e.
the subsequence of {1, 2 . . . n}). For the second part, simply construct a sequence
that traverses the subsequences ”diagonally.” ✷

Lemma 1.2.6 The set of reals, R is uncountable.

Definition 1.2.7 If there exists an surjective (onto) function f : A → B, then
#(A) ≤ #(B). Equivalently there is an injective (1-1) mapping g : B → A.
If #(A) ≤ #(B) and #(A) 6= #(B), then #(A) < #(B).

Example1.2.8 : If A ⊂ B, then #(A) ≤ #(B). Consider the subsequence of the
identity map(it is an onto map).

Theorem 1.2.9 If S any set then #(S) < #(2S), i.e. there is no bijection between
a set and its powerset.
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1.3 Principle of Induction

One of the most useful proof techniques in discrete structures is the principle of
induction. There are two well known (equivalent) formulations of this. To distinguish
between these we will give them different names.

Principle of Mathematical Induction
Let P (i) denote a predicate that is defined for an integer i. If P (0) is true
and for all i, P (i+ 1) is true whenever P (i) is true, then P (i) is true for
all integers i.

Principle of Complete Induction
Let P (i) denote a predicate that is defined for an integer i. If P (0) is true
and for all i P (i+1) is true whenever P (j) is true for all j ≤ i, then P (i)
is true for all integers i.

1.3.1 Two kinds of induction proofs

Inductive proofs are typically used to prove a property (predicate) for all non-negative

integers. For example, to prove that the sum of the first n integers is n·(n+1)
2

, we can

have P (i) represent the predicate that
∑j=i

j=1 j = i·(i+1)
2

for any integer i ≥ 0. The
Principle of Mathematical Induction (PMI) states that

P (0) ∧ ∀k[P (k) ⇒ P (k + 1)] ⇒ ∀nP (n)

A variation of the PMI, called Principle of Complete Induction (PCI) states the
following

P (0) ∧ ∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (k + 1)] ⇒ ∀nP (n)

Often this variation is more useful, especially in situations that involve structural
induction where a bigger structure is decomposed in terms of smaller structures but
not necessarily having size exactly less than one (as the PMI requires).

Before we proceed to use it, let us convince ourselves that the two avatars are
essentially equivalent, namely, that if we believe one, the other follows by logical
inference. For this, it should be clear that PCI implies PMI (Why ?). Let us try to
prove the converse, viz., PMI implies PCI.

Given an arbitrary predicate P (i) that we are trying to prove, let us define another
predicate P ′(i) as ∀k, k ≤ i, P (k). So P ′(i) is a predicate that holds if P (i) holds for
all k ≤ i. Clearly

[∀nP (n)] ⇔ [∀n, P ′(n)]
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although P (i) and P ′(i) are not equivalent. From PMI, we know that

P ′(0) ∧ ∀k[P ′(k) ⇒ P ′(k + 1)] ⇒ ∀nP ′(n) ⇒ [∀nP (n)] (1.3.1)

where the last implication follows from the previous observation. From the definition
of P ′(i), the antecedent ∀k[P ′(k) ⇒ P ′(k + 1)] can be rewritten as

∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (0) ∧ P (1) . . . P (k) ∧ P (k + 1)]

Since P (i) ⇒ P (i), the above is equivalent to ∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (k + 1)]
and since P ′(0) ⇔ P (0), equation 1.3.1 can be rewritten as

P (0) ∧ ∀k[P (0) ∧ P (1) . . . P (k) ⇒ P (k + 1)] ⇒ [∀nP (n)]

which is precisely the statement for PCI.
Remark Although these are equivalent, we will find the second form easier to apply
in most situations.

Problem Set

1. Let S = {(x, y)|x, y are reals}. If (a, b) and (c, d) belong to S, define (a, b)R(c, d)
if a2 + b2 = c2 + d2. Prove that R is an equivalence relation.

2. Let S be the set of real numbers. If a, b ∈ S, define a ∼ b if a− b is an integer.
Show that ∼ is an equivalence relation.

3. Let S be a set of integers. If a, b ∈ S, let aRb, if a · b ≥ 0. Is R an equivalence
relation on S? How about the relation R′ where aR′b if a+ b is even ?

4. Give examples of relations that are

• reflexive and symmetric but not transitive

• reflexive and transitive but not symmetric

• symmetric and transitive but not reflexive

5. Show that for every positive integer n, show that 22n−1 is divisible by 3.

6. Show that for every positive integer n and every real number θ. (cos θ + i sin θ)n =
cosnθ + i sinnθ.

7. Fundamental Theorem of Arithmetic Every integer greater than 1 is a
prime or a product of primes and the product is unique up to the order of the
factors. Prove the existence part using induction.

8. Show that the set Q×Q is countable.
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Chapter 2

Basic Counting

2.1 Permutation and Combinations

A fundamental problem involving discrete structures is counting the number of ob-
jects/events satisfying some property. This includes the possibility if such a subset
exists at all (existence problem). A more difficult version is choosing the best according
to some criterion, namely optimization.

Two elementary rules are extensively used for counting, namely the Addition
Principle and the Multiplication principle.

Definition 2.1.1 [Addition Principle] If one event can occur in m ways and another
in n ways then there are m+ n ways in which one of the two events can occur.

Note that the two events cannot occur simultaneously.

Definition 2.1.2 [Multiplication Principle] If one event can occur in m ways and
another event can occur in n, independently of each other, then there are m×n ways
in which both events can occur.

Example 2.1.3 : To choose two books of different languages among 5 books in
Latin, seven books in Greek and 10 books in Sanskrit, there are 5×7+5×10+7×10 =
155 ways since there are 5×7 ways to choose a Latin and a Greek book (multiplication
principle), 5 × 10 ways to choose a Latin and a Sanskrit book and 7 × 10 ways to
choose a Greek and a Sanskrit book. Finally, we must choose only one of the pairs,
so the answer follows from the Addition principle.

It is not difficult to formally prove the two principles. We can use inducion in the
following manner to prove the Addition Principle.
Induction Hypothesis For m of events of type 1 and i events of type 2, i ≥ 0, the
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number of events of either type is m+ i.

Proof: By induction on i. The base case is clearly true, i.e. when there are no events
of type 1. Suppose it is true for k events of type 2, namely there are m + k eents.
When there are k+1 events of type 2, then there are two distinct possiblities - either
k + 1st event occurs or it doesn’t. Theefore, by invoking the induction hypothesis,
the total number of possibiliies is n+ k + 1. ✷

Similarly one can prove the Multiplication Principle as well as the following gen-
eralizations given in exercises.

Definition 2.1.4 [Permutation and Combination] A permutation of n distinct
objects is an arrangement or ordering of the n objects. An r-permutation of n
distinct objects is an arrangement using r out of the n objects. An r-combination
of n distinct objects is an unordered selection (subset) of size r.
We will denote r-permutation and r-combination of n objects by P (n, r) and C(n, r)
respectively.

From the multiplication principle, we obtain

P (n, 2) = n(n− 1) P (n, 3) = n(n− 1)(n− 2)
P (n, n) = n(n− 1)(n− 2) . . . 1 = n! (n factorial)
P (n, r) = n(n− 1) . . . (n− r + 1) = n!

(n−r)!

To obtain a formula for r-combination, we will make use of an indirect technique.
For every distinct r-subset, there are P (r, r) distinct arrangements. Let us number
the distinct r-permutations in some order say Π1,Π2 . . .Πt where t = P (n, r). We can
group them in a way such that each group corresponds to a distinct r-subset. From
the previous observation, each group has P (r, r) members. Therefore

C(n, r) =
P (n, r)

P (r, r)
=

n!

(n− r)!× r!

Caveat We could have invoked multiplication principle, but we have to be careful
about setting up the events appropriately. One of the most common pitfalls of count-
ing problems is the temptation of applying the formulae carelessly. The formulae are
usually simple but one must be careful about the applicability in a specific situation.

2.2 Distribution problems

The problem of counting the number of ways to distribute r objects in n cells shows
up in different contexts and is also referred to as occupancy problems. Let us consider
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the following cases depending on distinguishable and distinguishable objects. The
cells are distinct and can be numbered as C1, C2 . . . Cn.

We will first consider the distinguishable objects case and further separate out
the situations where there can be at most one object per cell or the unrestricted
case (any number). In the unrestricted case, there are n choices for every ball and
since these are independent, the number of possibilities is nr from the multiplication
principle. In the restricted case, i.e. at most one object per cell, suppose r ≤ n.
Any distribution corresponds to an arrangement of r labels from the set {1, 2 . . . n},
namely, the labels of the occupied cells, where the i-th label indicates the placement
of the i-th object. This is clearly P (n, r). If n ≤ r, then each distribution corresponds
to an arrangement of n labels from the set {1, 2, . . . r}, namely the objects that are
alloted to cells C1 . . . Cn. This is the same as P (r, n).

If the objects are indistinguishable, then in the unrestricted case, two distribu-
tions are equivalent, if the number of objects in each cell remains same (although the
labels of the balls may be different). Each configuration can be described as a vector
(x1, x2, . . . xn) where xi denotes the content of the i-th cell. Moreover

∑n
i xi = r.

Consider n − 1 markers and look at any configuration of r balls and n− 1 markers.
Interpret the number of objects between the j and j + 1st marker as the content of
the j-th cell (make appropriate adjustments for the end markers). Notice that by per-
muting the (indistinguishable) markers among themselves and the (indistinguishable)
objects among themselves the cell-contents do not change. So the number of distinct
distributions (where two distributions are different if they differ in one or more cell

contents) is given by P (n+r−1,n+r−1)
P (n−1,n−1)×P (r,r)

= C(n+ r − 1, r). The above argument can be
made more rigorous by invoking the Addition and Multiplication Principles.

In the restricted case (at most one per cell), the corresponding formulae for r ≤ n
is C(n, r). Let us formalise the arguments since these have a very intuitive connections
with the corresponding figures of the distinguishable case. Let us consider the set of
distinct distributions for the distinguishable objects when r ≤ n. As noted above,
these can be represented as strings of length r over the labels {1, 2 . . . n}. Two
strings s1, s2 . . . sr and s′1, s

′
2 . . . s

′
r represent identical distribution for indistinguishable

objects if one can be permuted into the other, i.e., they contain the same labels.
Therefore, we can group the strings into equivalence classes, where a class corresponds
to strings over the same labels.

Claim 2.2.1 The number of classes is equal to the number of distribution of indis-
tinguishable objects. Moreover each class contains exactly r! strings.

Proof: Since the set of labels are different for two classes, the number of possible
distributions is not less than the number of classes. Moreover, each distribution
corresponds to set of labels, so the number of distribution cannot exceed the number
of classes. Therefore they are equal. (Basically x ≤ y and y ≤ x implies x = y).
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For the second part of the claim, note that each distinct permutation of (a fixed set
of) labels represent a different distribution for distinguishable objects. ✷

From the above claim it follows that the number of distributions for distinguishable
objects equals r! times the number of distributions for indistinguishable objects. This
gives us the required result as P (n, r) = C(n, r)× r!.

A new situation emerges if we fix the number of each type of objects (as opposed
to having an unlimited number of each object). Suppose we have ri objects of type
i, such that

∑k
i ri ≤ n. Note that the ri objects are indistinguishable. Then the

possible distributions is equal to

C(n; r1, r2, . . . rk) =
n!

r1!× r2!× . . . rk!× (n− r1 − r2 . . . rk)!

This follows from the observation that for the r1 objects of type 1, the number of
choices for placements is C(n, r1), for object 2, the number of choices is C(n− r1, r2)
and so on. The result follows from the Multiplication principle.

Remark 2.2.2 Note that the value of the above expression does not depend on the
order in which the types are chosen.

Problem Set

1. If there are k events E1, E2 . . . Ek, where Ei has ni possibilities then show that

• There are n1 + n2 . . . nk ways in which one of Ei can occur.

• There are n1×n2 . . . nk ways in which all the events can occur (if they are
independent of each other).

2. Show that C(n, r) = C(n− 1, r − 1) + C(n− 1, r).
Instead of applying the formula, you may want to argue using the addition
principle. Consider all distinct subsets that contain a fixed object and those
subsets that do not contain this fixed object. The above is an example of
a recurrence equation that will be addressed later in the course. The above
identity can be used to derive a formula for C(n, r) thus inverting the process.

3. In how many ways can you choose r objects out of n different kinds where there
are unlimited number of objects of each type ?

4. How many ways are there to place two identical queens on an 8×8 chess board
so that the queens are not in a common row, column or diagonal.
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5. How many different rectangles can be drawn on an 8×8 chess board (rectangles
can have lengths 1 through 8 and two rectangles are different if they contain a
different subset of squares).

6. What is the probability that a 4-digit telephone number has one or more re-
peated digits ?

7. There are six French books, eight Russian books, and five different Spanish
books. How many ways are there to arrange the books in a row with all books
of the same language consecutively arranged ?

8. How many ways are there to assign 10 students to 10 out of 20 sections ?

9. A man has n friends and invites a different subset of four of them to his house
for a year (365 nights). How large must n be ?

10. What is the probability that the difference between the largest and the smallest
numbers is k in a subset of four different numbers chosen from 1 to 20 ( 3 ≤
k ≤ 19) ?

11. How many points of intersection are formed by the chords of an n-gon (a regular
polygon with n sides) assuming that no three chords meet at a common point ?
How many line segments are formed by the intersections - note that if a chord
has k intersection points then it has k + 1 segments.

12. How many integer solutions are there to the equation x1 + x2 + x3 + x4 = 12 ,
with xi ≥ 0 ? How many solutions are there with xi ≥ 1 ?

13. In how many ways can you distribute 20 distinct flags into 12 distinct flagpoles
if in arranging the flags on the poles, the order from the ground up makes a
difference ?

14. In how many ways can you distribute r identical balls into n distinct boxes with
the first m boxes collectively containing at least s balls ?

15. Eleven scientists are working on a secret project. They wish to lock up the
documents in a cabinet such that the cabinet can be opened if and only if six
or more scientists are present. What is the smallest number of locks required ?
What is the smallest number of keys that each scientist must carry ?

16. In how many ways can three numbers be selected from the numbers 1, 2 . . . 300
such that their sum is divisible by 3 ?

17. Show that (k!)! is divisible by (k)!(k−1)!.
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18. A binary string is a sequence of 0’s and 1’s. How many binary strings of length
n contain an even number of 0’s ? If strings are over the alphabet {0, 1, 2}, then
show that the number of strings where 0 appears an even number of times is
(3n + 1)/2.

19. A boolean function can be represented using a tabular form where all the n-digit
binary numbers are listed along with the function values. How many boolean
functions are possible ?
A self-dual boolean function is a table which remains unchanged if all the 0’s
and 1’s are swapped. How many self-dual boolean functions are there ?
A symmetric boolean function is one that remains unchanged for any permuta-
tion of the n input columns. How many symmetric boolean functions are there
?

20. A system consists of four identical particles. The total energy in the system is
4Eo where Eo is a positive constant. Each of the particles can have an energy
level equal to kEo ( k = 0, 1..4). A particle with energy kEo can occupy one
of the k2 + 1 distinct energy states at that energy level. How many different
configurations (in terms of energy states occupied by the particles) can the
system have ?
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Chapter 3

Introduction to Graphs

A graph G = (V,E) consists of a finite set V of vertices and a set E of edges which are
ordered pairs of vertices. Schematically, we represent graphs using a set of points that
denote vertices and edges by an arc joining the two defining vertices with an arrow
indicating the ordering of the vertices. An undirected graph doesn’t have directions
associated with an edge. If we think about the edges as roads connecting vertices
then in the undirected case we can traverse the edge in either direction where as the
(directed) graph is like one-way streets. Unless stated otherwise a graph will be used
to imply the undirected version.

There are several generalization of the basic definition. If the set of edges form a
multiset, i.e., some edges have multiple instances, then it is a multigraph. One way
to represent a multigraph is to label the edges with an integer denoting the number
of occurrences of the edge. This may be regarded as a weighted graph, where each
edge has an associated (integral) weight. In some cases, we will allow weights to be
arbitrary real numbers.

A more complicated structure is a hypergraph where the edges correspond to ar-
bitrary subsets of vertices (and not necessarily pairs of vertices). The choice of a
certain class of graphs depends on the application.

Graphs can be used to model very complex problems and some of the most intu-
itive examples are problems related to communication networks. A flowchart can be
thought of as a graph where the nodes represent instructions and the edges indicate
the flow of control.

3.1 Representation of graphs

Graphs can be represented as a list of edges associated with every vertex. If there
are m = |E| edges and n = |V | vertices then the size of the representation is roughly
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m+ n (Why ?).
Another representation is using matrices of dimensions n×n. If AG is the matrix

corresponding to graph G = (V,E), then Ai,j = 1 if (i, j) ∈ E and 0 otherwise. Here
we are assuming that the vertex set is {1, 2, . . . n}. The size of this representation is
n2 irrespective of the number of edges.

The motivation for having a good representation of graphs is to use computer
programs for solving graph problems. The above two representations can be easily
converted into appropriate data-structures.

3.2 Reachability in graphs

The neighbourhood of a vertex v ∈ V is the set of vertices W ⊂ V such that for all
w ∈ W, (v, w) ∈ E. The number of vertices in the neighbourhood N(v) of a vertex
v is called the degree of v.

Definition 3.2.1 A path is a sequence of vertices (x1, x2 . . . xk) such that xi, xi+1 is
an edge of the graph. A path is simple if there is no repetition of vertices. If x1 = xk

then the path is called a cycle.

3.2.1 Tours and cycles

A cycle that visits every vertex exactly once is called a Hamiltonian cycle. It is an
extremely hard algorithmic problem to detect if a Hamiltonian cycle exists.

A cycle that visits every edge exactly once is called a Euler’s path. Historically,
the origin of the problem is known as the Konigsberg bridge problem. Two islands
and two banks of the river Pregel were connected by seven bridges (see Figure ?? )
and the problem is to make a tour passing through every bridge exactly once. Euler
gave a very simple necessary and sufficient condition for such a tour to be feasible,
namely every vertex should be of even degree. In the case of directed graphs, the
equivalent condition is that for every vertex, the indegree equals the outdegree.

3.2.2 Connectivity

One of the basic problems in graphs is connectivity, namely if there exists a path
between every pair of vertices. We will assume that a vertex is connected to itself.

Definition 3.2.2 A set of vertices C form a connected component if for every
u, v ∈ C there is a path from u to v. Moreover for all x /∈ C, C ∪ {x} is not a
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connected component, i.e. C is maximal. If C includes all vertices in the graph, then
the underlying graph is connected.

Remark Note that for directed graphs, a path of u to v is not the same as a path
from v to u.

There are several algorithms for verifying if a given graph is connected, the most
notable being Depth First Search and Breadth First Search. Among other conse-
quences of these search techniques, they produce Spanning Forest, which is a special
kind of a sub-graph.

Definition 3.2.3 A subgraph S = (W,F ) of a graph G = (V,E) is graph such
that W ⊂ V and F ⊂ E. A subgraph is a tree if it is connected and removal of any
one edge disconnects some pairs of vertices, i.e. it is a minimal connected graph. A
set of disjoint trees is called a forest.

Lemma 3.2.4 The number of edges in a tree, m is related to the number of vertices
n by the formula m = n− 1.

Corollary 3.2.5 If there are k trees in a forest with m edges and n vertices then
m = n− k.

Lemma 3.2.6 In a tree, there is a unique path between every pair of vertices.

Remark This is equivalent to saying that there are no cycles in a tree.

3.2.3 k-connectivity

A measure of how well-connected a graph is related to the following question -

Does the graph remain connected if any subset of k vertices is removed ?

This is clearly motivated by the problem of node-failures in a communication network
where we may have to find alternate routes. The same question can be posed with
respect to a set of edges.

Definition 3.2.7 A graph is k vertex-connected if removal of any k − 1 vertices
does not disconnect the graph. A graph is k edge-connected if the graph remains
connected after removing any set of k − 1 edges.

A classic theorem on k-connectivity can be stated as follows

Theorem 3.2.8 (Menger) Let s and t be distinct vertices of a graph G. Then the
minimal number of vertices that must be removed to separate s from t is the maximum
number of vertex-disjoint paths between s and t.
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Remark The same holds true for edge-disjoint paths and edge-connectivity. The
minimum number of vertices (edges) that must be removed to disconnect a graph is
called the vertex (edge) connectivity of the graph and is usually denoted by κ (λ).

3.3 Some special classes of graphs

A graph is called bipartite, if its vertices can be partitioned into two sets V1, V2 such
that there there are no edges between the vertices in V1 (respectively V2).

Lemma 3.3.1 A graph is bipartite if and only if all the cycles are of even length.

A matching in a graph G = (V,E) is subset M ⊂ E such that no two edges
share an endpoint. A matching M is maximal is there is no matching M ′ such that
M ⊂ M ′. A matching is maximum id there is no larger matching. A matching is
perfect if all vertices are matched.

Let M be a matching. A path P is called an M-alternating path if its edges
alternate between edges inM and E−M . AnM-alternating path is anM-augmenting
path if P starts and ends with vertices that are not matches in M .

Theorem 3.3.2 (Berge) M is maximum iff there is no augmenting path.

In a bipartite graph, if all the vertices in V1 are matched then these vertices are
saturated.

Theorem 3.3.3 (Hall) In a bipartite graph G = (V1∪V2, E), there exists a matching
that saturates all vertices in V1 iff for all S ⊂ V1, |N(S)| ≥ |S| where N(S) is the set
of all vertices in V2 that are connected to S by edges in E.

A graph is planar if it can be drawn on a plane without the edges crossing. (Strictly
speaking, if the graph can be embedded on the sphere without edges crossing). It
is known that every planar graph has a straight line embedding (i.e. all edges are
straight line segments).

Lemma 3.3.4 (Euler’s formula) If G is a connected planar graph, then any plane
graph embedding of G that has v vertices, e edges, and r regions satisfies v+r−e = 2.

A very elegant theorem due to Kuratowsky, gives a necessary and sufficient con-
dition for a graph to be planar.

Theorem 3.3.5 (Kuratowski) A graph is planar iff it doesn’t contain any subgraph
homeomorphic to K5 (the complete graph on five vertices) or K3,3 (complete bipartite
graph on 6 vertices).
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Definition 3.3.6 A colouring of a graph assigns colours to vertices such that no
two adjacent vertices have the same colour. The minimal number of colours required
for a graph G is called the chromatic number and is usually denoted by χ(G). An
edge-colouring of a graph is a colouring of the edges such that no two edges that are
incident on the same vertex get the same colour.

Clearly bipartite graphs are two colourable. One of the classic colouring theorems
concern planar graphs.

Theorem 3.3.7 (four-colour theorem) Every planar graph is 4-colourable.

There are many natural problems that can be modelled as graph coloring.
Example 3.3.8 : In a school each teacher has to teach a certain number of
classes and each class must be taught by a certain number of teachers. The obvious
constraints about scheduling the classes is that a teacher cannot teach two classes
simultaneously and a class cannot be taught by two teachers. We are interested in
scheduling the classes in a way that takes minimum number of hours (the duration
of a lecture). It is not difficult to see that a valid scheduling corresponds to colouring
the edges. So the answer to this problem is the minimum number of colours required.
The following is an important result on edge-colouring.

Theorem 3.3.9 (Vizing’s Theorem) If the maximum degree of a graph is d, then
we need d or d+ 1 colours to colour the edges.

3.4 Problem Set

1. In a graph that has exactly two vertices of odd degree, there is a path connecting
these vertices.

2. Prove or disprove
The union of any two distinct paths (not necessarily simple) joining two vertices
contains a cycle.

3. A graph is connected if and only if for any partition V into two subsets V1 and
V2, there is an edge joining a vertex in V1 with a vertex in V2.

4. In a connected graph, any two longest paths have a point in common.

5. If a graph G is not connected, then the complement of G, Ḡ is connected.
(Ḡ = (V, Ē), where (v, w) ∈ Ē iff (v, w) /∈ Ē)

6. If δ is the minimum degree of a vertex and κ and λ are the vertex and edge
connectivity, show that κ ≤ λ ≤ δ.
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7. Show that any graph has two vertices of equal degree.

8. Show that d1 ≤ d2 ≤ . . . dn is the degree sequence of a tree iff d1 ≥ 1 and
∑

i di = 2n− 2.

9. Show that a tree is 2-colourable.

10. Let G = (V,E) be a directed graph A. A covering is a partition of the arcs
and in paths and cycles such that E = ∪iEi where Ei is a path or a cycle and
Ei ∩ Ej = φ for i 6= j. A covering minimum k is called a minimal covering.
Prove that if the graph is a directed connected Euler graph then it has a unique
minimal cover, namely the Euler cycle.
Hint: First show that the cover can contain only cycles and then show that it
has exactly one cycle (by merging cycles).

11. A connected graph has an Euler circuit if and only if it can be partitioned into
simple cycles.

12. There are n teams in a round-robin tournament. Show that they can be ordered
according to their winning records such that each team immediately precedes a
team that it has beaten. (This ordering is not unique).

13. Eleven students plan to have dinner together for several days. They will be
seated in a round table and the plan calls for each student to have different
neighbors each day. How many days are needed ?

14. If a graph has maximum degree d then show that it can be coloured using d+1
colours. Also show that if a graph has O(|V |) edges then it can be coloured
using O(

√
V ) colours.

15. Show that the vertices of any graph can be partitioned into two sets such that
for every vertex, the set of neighbours is equally distibuted into the two groups.

16. If every vertex has degree at least |V |/2 then there is a simple cycle consisting
of all vertices.
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Chapter 4

Counting techniques

The basic methods of counting using permutations and combinations are sometimes
not adequate or are too complex to apply in many situations. There are many tech-
niques that have been developed for specific problems which have grown from ad hoc
to fairly general principles. We discuss three such techniques in this chapter - namely
pigeon-hole, principle of inclusion and exclusion and one of the most successful
in recent years called the probabilistic method.

4.1 The pigeon hole principle

It is based on a very simple observation that if more than n items are distributed in
n pigeon-holes then at least one of them will have more than one item.
Example4.1.1 : At least two vertices in a graph have the same degree. (Exercise
problem in previous chapter)
Since there are n vertices and all the degrees must be in the range [1, 2 . . . n− 1], at
least two vertices must fall in the same value of the range.

A lot of geometric packing problems fall under this category.
Example 4.1.2 : Show that five points cannot be placed in an unit square such
that every pair is at least unit distance apart.

A very common usage of this principle is that if the weighted sum of n items is w
then no more than a 1

k
of them can exceed k times the average weight (k is a positive

integer). This is often known as Markov’s inequality for expectation.
A classic application of the pigeon-hole is to the following problem also known as

the Erdos-Szekeres theorem.

Theorem 4.1.3 In any sequence of more than (r − 1) · (s − 1) different numbers
there is an increasing subsequence of r terms or a decreasing subsequence ofs terms
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or both. Roughly speaking, in a sequence of length n there is an increasing or a
decreasing subsequence of length ⌈√n⌉.
Proof For each number ni of the sequence, let us label with (xi, yi) which are the
lengths of the largest increasing/decreasing subsequence beginning/ending at ni. If
there is no increasing/decreasing subsequence of length r/s, 1 ≤ xi ≤ r − 1 and
1 ≤ yi ≤ s− 1. Since there are more than (r − 1) · (s− 1) numbers, some pair must
be repeated - say xi = xj and yi = yj for j > i. If ni < nj then xi > xj , else yj > yi.

4.2 Principle of Inclusion and Exclusion

This is easier to understand in terms of sets of objects. It is very easy to show that
for sets X and Y

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |
In general suppose there are N objects that have various properties numbered

{1, 2, . . . k} (for convenience). Each object has none or many of these properties. Let
Ni be the number of objects with property i and NS be the number of objects that
have properties S ⊂ {1, 2, . . . k}. If we use N0 to denote the number of objects that
have none of the properties then

N0 = N − (
∑

i

Ni) + (
∑

i,j

Ni,j)− (
∑

i,j,k

Ni,j,k) . . .+ (−1)kN1,2,3..k

The proof of this can be worked out along the following lines. If an object does
not satisfy any of the properties, then it contributes exactly 1 to both sides. Consider
an object that satisfies exactly r ≥ 1 properties. Then it contributes −r to the first
summation, C(r, 2) to the second summation, (−1)iC(r, i) to the i-th summation.
Therefore it is

1− C(n, 0) + C(n, 2) . . . (−1)k = 0

which is exactly what it contributes to the left hand side.
Example 4.2.1 : Euler’s totient function Let m be a positive integer whose
distinct prime factors are p1, p2 . . . pn. Then the number of integers that are relatively
prime to m (i.e. no common factors other than 1) is

φ(m) = m

(

1− 1

p1

)(

1− 1

p2

)

. . .

(

1− 1

pn

)

Example4.2.2 : Show that the number of permutations of {1, 2, . . . n} such that
for all i, i does not map to the position i (also called derangement) is

n!

(

1

2!
− 1

3!
. . . (−1)n

1

n!

)
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4.3 The probabilistic method

Consider an experiment where there are a number of possible outcomes that we call
the sample space. An event corresponds to a subset of the sample-space S; that is
it corresponds to some outcomes of the sample-space. Historically Laplace defined
probability of an event E as

Probability of E =
|E|
|S|

where |.| denotes the number of outcomes. This definition is applicable where all
outcomes are equally likely. The above formula can be used to count the number of
outcomes of E if we know the probability. This method is particularly useful when
we are interested in a bound on |E| rather than the exact count which is harder to
obtain.

The notions of independent events and conditional probability are very useful in
this regard. We give a very brief account of the basics of probability theory at the
end of this chapter.

We motivate the use of the probabilistic method with the following problem.
Given six people, where every pair of persons either know eachother or they are
strangers, show that there always exists a set of three people who are mutually known
or mutually strangers.

We do a case analysis from the perspective of any of the six persons (say person
1), he knows at least three others or doesn’t know at least three persons among the
remaining five. Consider the case that he knows three (the other case is symmetric),
say X, Y, Z, we can easily argue that either X, Y, Z are mutually strangers or at least
two among them know eachother (and of course know person 1).

The above problem can be posed as an equivalent problem in edge colouring,
where in K6, if we two colour the edges, then there is a monochromatic (all edges
with same colour) triangle. The drawback with the previous solution is that it is very
difficult to argue similar properties with somewhat larger number of vertices, even
10, using case analysis. You can try to convince yourself by trying to showw that in
K18 there is a monochromatic K4.

We now show the application of a new method based on probabilistic arguments.
Example 4.3.1 : Let R(k, t) be the minimal n such that when complete graph
Kn is edge coloured using blue and red colours, either there is a red Kt or a blue Kk.
Using case analysis, one can show that K5 contains either a red triangle or a blue
triangle.
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For larger values of n, case analysis becomes intractable. Here is an alternate
argument. Suppose we colour the edges of Kn red and blue choosing each colour with
equal probability. So the sample space consists of all possible colourings of Kn. The
probability that a set S of k vertices is monochromatic is pk =

1
21+C(k,2) corresponding

to the two colours. The probability that any of the C(n, k) Kk are monochromatic is
less than

∑

pk ·C(n, k)·. (Note that the probability of the union of events is no more
that than the sum of the probabilities of the individual events). If this probability is
less than 1, it implies that among the sample space of all possible colourings of Kn,
there exists some colouring where all the C(n, k) cliques are not monochromatic,
i.e. R(k, k) > n.

Our next example is an important problem in graph theory. A dominating set U
of an undirected graph G = (V,E) is a subset U ⊂ V such that every vertex has a
neighbour in U . The problem of computing a minimum cardinality dominating set
is very hard (algorithmically intractable. But we can prove some interesting bounds
using the probabilistic method.
Example4.3.2 : If the minimum degree of a graph is δ, then there is a dominating
set of size at most n · (1 + log(δ + 1))/(δ + 1).

Pick every vertex independently with probability p = log(δ+1)/(δ+1) and let X
denote this sample. Let Y be the set of vertices in V that do not have a neighbour in
X . The probability that a vertex v does not have a neighbour in X is the probability
q that neither v nor any of the δ neighbours were picked in the sample which is

(1− log(δ + 1)/(δ + 1))δ+1

So the expected size of Y is nq expected size of X is np and using the linearity of
expectation E[X +Y ] = n(p+ q) which works out to be ≤ n · (1+ log(δ+1))/(δ+1).
This means that there is some choice of X for which there is a dominaing set (X ∪Y )
of the required size. In fact we can claim something stronger that by choosing the
vertices randomly the probability that the dominating set exceeds twice the stated
bound is less than half (Markov’s inequality).

4.4 Problem Set

1. There are n letters which have corresponding n envelopes. If the letters are put
blindly in the envelopes, show that the probability that none of the letters goes
into the right envelope tends to 1

e
as n tends to infinity.

2. How many 1-1 functions exist between {1, 2, . . .m}to{ 1,2, . . . n } (for n ≥ m)
?
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For n ≤ m, show that the number of onto functions is given by

nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m . . . (−1)n−1C(n, n− 1)1m

3. There are 10 pairs of shoes in a closet. In how many ways can eight shoes be
chosen such that no pair is chosen ? Exactly one pair is chosen ?

4. Given n+ 1 different positive integers ≤ 2n, show that there exists a pair that
adds upto 2n+ 1.

5. Prove that in any n+ 1 integers there will be a pair which differs by a multiple
of n. Using this or otherwise show that there exists some subset of n arbitrary
positive integers that whose summation is a multiple of n.

6. Given an equilateral triangle T , show that it is not possible to cover T with
three circles each of diameter less than 1√

3
.

7. Show that in a planar graph G = (V,E), there is a constant α < 1 (independent
of the number of vertices or edges) such that there are at least α|V | vertices of
degree less than 12.

8. Show that among 23 people, the probability that all their birthdays are distinct
is less than 0.5. Assume that for each person all birthdays are equally likely.
Remark You can think of this as a probabilistic analogue of the pigeon-hole
for which there had to be 367 persons to guarantee (with probability 1) that
there was some common birthday. In literature this is known as the birthday
paradox.

9. What is probability that when 50 balls are thrown into 100 bins that these fall
into 10 or less bins ?

10. What is the probability that when you throw m balls in n bins, that (at least)
one of the bins is unoccupied ?

11. Consider the experiment of tossing a fair coin till two heads or two tails appear
in succession.
(i) Describe the sample space.
(ii) What is the probability that the experiment ends with an even number of
tosses ?
(iii) What is the expected number of tosses ?
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12. A chocolate company is offering a prize for anyone who can collect pictures of
n different cricketers, where each wrap has one picture. Assuming that each
chocolate can have any of the pictures with equal probability, what is the ex-
pected number of chocolates one must buy to get all the n different pictures
?

13. In a temple, thirty persons give their shoes to the caretaker who hands back
the shoes at random. What is the expected number of persons who get back
their own shoes.

14. Imagine that you are lost in a new city where you come across a crossroad.
Only one of them leads you to your destination in 1 hour. The others bring you
back to the same point after 2,3 and 4 hours respectively. Assuming that you
choose each of the roads with equal probability, what is the expected time to
arrive at your destination ?

15. Gabbar Singh problem Given that there are 3 consecutive blanks and three
consecutive loaded chambers in a pistol, and you start firing the pistol from a
random chamber, calculate the following probabilities. (i) The first shot is a
blank (ii) The second shot is also a blank given that the first shot was a blank
(iii) The third shot is a blank given that the first two were blanks.

16. A gambler uses the following strategy. The first time he bets Rs. 100 - if he wins,
he quits. Otherwise. he bets Rs. 200 and quits regardless of the result. What
is the probability that he goes back a winner assuming that he has probability
1/2 of winning each of the bets.
What is the generalization of the above strategy ?

17. Three prisoners are informed by the jailor that one of them will be acquited
without divulging the identity. One of the prisoners requests the jailor to divulge
the identity of one of the other prisoner who won’t be acquited. The jailor
reasons that since at least one of the remaining two will not be acquited, reveals
the identity. However this makes this prisoner very happy. Can you explain this
?

18. Show that R(s, g) ≥ (s−1) · (g−1)+1 using explicit construction, i.e. describe
a colouring on K(s−1)·(g−1).

19. Verify that R(k, k) > 2k/2 using the probabilistic method. Note that this is a
much superior bound compared to the previous problem.
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20. Let W (k) be the least n such that if the set {1, 2, . . . n} is two-coloured, there
exists a monochromatic arithmetic progression of k terms. Show that W (k) >
2k/2 using the probabilistic method.

4.5 Some basics of probability theory

The sample space Ω may be infinite with infinite elements that are called elementary
events. For example consider the experiment where we must toss a coin until a head
comes up for the first time. A probability space consists of a sample space with a
probability measure associated with the elementary events. The probability measure
Pr is a real valued function on events of the sample space and satisfies the following

1. For all A ⊂ Ω , 0 ≤ Pr[A] ≤ 1

2. Pr[Ω] = 1

3. For mutually disjoint events E1, E2 . . . ,Pr[∪iEi] =
∑

i Pr[Ei]

Sometimes we are only interested in a certain collection of events (rather the entire
sample space)a, say F . If F is closed under union and complementation, then the
above properties can be modified in a way as if F = Ω.

The principle of Inclusion-Exclusion has its counterpart in the probabilistic world,
namely

Lemma 4.5.1

Pr[∪iEi] =
∑

i

Pr[Ei]−
∑

i<j

Pr[Ei ∩ Ej ] +
∑

i<j<k

Pr[Ei ∩ Ej ∩ Ek] . . .

Definition 4.5.2 A random variable (r.v.) X is a real-valued function over the
sample space, X : Ω → R. A discrete random variable is a random variable whose
range is finite or a countable finite subset of R.
The distribution function FX : R → (0, 1] for a random variable X is defined as
FX(x) ≤ Pr[X = x]. The probability density function of a discrete r.v. X , fX is given
by fX(x) = Pr[X = x].
The expectation of a r.v. X , denoted by E[X ] =

∑

x x · Pr[X = x].

A very useful property of expectation, called the linearity property can be stated
as follows

Lemma 4.5.3 If X and Y are random variables, then

E[X + Y ] = E[X ] + E[Y ]
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Remark Note that X and Y do not have to be independent !

Definition 4.5.4 The conditional probability of E1 given E2 is denoted by Pr[E1|E2]
and is given by

Pr[E1 ∩ E2]

Pr[E2]

assuming Pr[E2] > 0.

Definition 4.5.5 A collection of events {Ei|i ∈ I} is independent if for all subsets
S ⊂ I

Pr[∩i∈SEi] = Πi∈S Pr[Ei]

Remark E1 and E2 are independent if Pr[E1|E2] = Pr[E2].
The conditional probability of a random variableX with respect to another random

variable Y is denoted by Pr[X = x|Y = y] is similar to the previous definition with
events E1, E2 as X = x and Y = y respectively. The conditional expectation is defined
as

E[X|Y = y] =
∑

x

Pr x · [X = x|Y = y]

The theorem of total expectation that can be proved easily states that

E[X ] =
∑

y

E[X|Y = y]
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Chapter 5

Recurrences and generating
functions

Given a sequence a1, a2 . . . an (i.e. a function with the domain as integers), a compact
way of representing it is an equation in terms of itself, a recurrence relation. One of
the most common examples is the Fibonacci sequence specified as an = an−1 + an−2

for n ≥ 2 and a0 = 0, a1 = 1. The values a0, a1 are known as the boundary conditions.
Given this and the recurrence, we can compute the sequence step by step, or better
still we can write a computer program. Sometimes, we would like to find the general
term of the sequence. Very often, the running time of an algorithm is expressed as
a recurrence and we would like to know the explicit function for the running time to
make any predictions and comparisons. A typical recurrence arising from a divide-
and-conquer algorithm is

a2n = 2an + cn

which has a solution an ≤ 2cn⌈log2 n⌉. In the context of algorithm analysis, we are
often satisfied with an upper-bound. However, to the extent possible, it is desirable
to obtain an exact expression.

Unfortunately, there is no general method for solving all recurrence relations. In
this chapter, we discuss solutions to some important classes of recurrence equations.
In the second part we discuss an important technique based on generating functions
which are also important in their own right.

5.1 An iterative method - summation

As starters, some of the recurrence relations can be solved by summation or guessing
and verifying by induction.
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Example 5.1.1 : The number of moves required to solve the Tower of Hanoi
problem with n discs can be written as

an = 2an−1 + 1

By substituting for an−1 this becomes

an = 22an−2 + 2 + 1

By expanding this till a1, we obtain

an = 2n−1a1 + 2n−2 + . . . ..+ 1

This gives an = 2n − 1 by using the formula for geometric series and a1 = 1.
Example5.1.2 : For the recurrence

a2n = 2an + cn

we can use the same technique to show that a2n =
∑

i=0 log2 n2
in/2i · c+ 2na1.

Remark We made an assumption that n is a power of 2. In the general case, this may
present some technical complication but the nature of the answer remains unchanged.
Consider the recurrence

T (n) = 2T (⌊n/2⌋) + n

Suppose T (x) = cx log2 x for some constant c > 0 for all x < n. Then T (n) =
2c⌊n/2⌋ log2⌊n/2⌋+n. Then T (n) ≤ cn log2(n/2)+n ≤ cn log2 n−(cn)+n ≤ cn log2 n
for c ≥ 1.

A very frequent recurrence equation that comes up in the context of divide-and-
conquer algorithms (like mergesort) has the form

T (n) = aT (n/b) + f(n) a, b are constants and f(n) a positive monotonic function

Theorem 5.1.3 For the following different cases, the above recurrence has the fol-
lowing solutions

• If f(n) = O(nlogb a−ǫ) for some constant ǫ, then T (n) is Θ(nlogb a).

• If f(n) = O(nlogb a) then T (n) is Θ(nlogb a log n).

• If f(n) = O(nlogb a+ǫ) for some constant ǫ, and if af(n/b) is O(f(n)) then T (n)
is Θ(f(n)).
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Example 5.1.4 : What is the maximum number of regions induced by n lines
in the plane ? If we let Ln represent the number of regions, then we can write the
following recurrence

Ln ≤ Ln−1 + n L0 = 1

Again by the method of summation, we can arrive at the answer Ln = n(n+1)
2

+ 1.
Example5.1.5 : Let us try to solve the recurrence for Fibonacci, namely

Fn = Fn−1 + Fn−2 F0 = 0, F1 = 1

If we try to expand this in the way that we have done previously, it becomes unwieldy
very quickly. Instead we ”guess” the following solution

Fn =
1√
5

(

φn − φ̄n
)

where φ = (1+
√
5)

2
and φ̄ = (1−

√
5)

2
. The above solution can be verified by induction.

Of course it is far from clear how one can magically guess the right solution. We shall
address this later in the chapter.

5.2 Linear recurrence equations

A recurrence of the form

c0ar + c1ar−1 + c2ar−2 . . .+ ckar−k = f(r)

where ci are constants is called a linear recurrence equation of order k. Most of
the above examples fall under this class. If f(r) = 0 then it is homogeneous linear
recurrence.

5.2.1 Homogeneous equations

We will first outline the solution for the homogeneous class and then extend it to the
general linear recurrence. Let us first determine the number of solutions. It appears
that we must know the values of a1, a2 . . . ak to compute the values of the sequence
according to the recurrence. In absence of this there can be different solutions based
on different boundary conditions. Given the k boundary conditions, we can uniquely
determine the values of the sequence. Note that this is not true for a non-linear
recurrence like

ar
2 + ar−1 = 5 with a0 = 1
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This observation (of unique solution) makes it somewhat easier for us to guess some
solution and verify.

Let us guess a solution of the form ar = Aαr where A is some constant. This may
be justified from the solution of Example 5.1. By substituting this in the homogeneous
linear recurrence and simplification, we obtain the following equation

c0α
k + c1α

k−1 . . .+ ck = 0

This is called the characteristic equation of the recurrence relation and this degree
k equation has k roots, say α1, α2 . . . αk. If these are all distinct then the following is
a solution to the recurrence

ar
(h) = A1α

r
1 + A2α

r
2 + . . . Akα

r
k

which is also called the homogeneous solution to linear recurrence. The values of
A1, A2 . . . Ak can be determined from the k boundary conditions (by solving k simul-
taneous equations).

When the roots are not unique, i.e. some roots have multiplicity then for mul-
tiplicity m, αn, nαn, n2αn . . . nm−1αn are the associated solutions. This follows from
the fact that if α is a multiple root of the characteristic equation, then it is also the
root of the derivative of the equation.

5.2.2 Inhomogeneous equations

If f(n) 6= 0, then there is no general methodology. Solutions are known for some

particular cases, known as particular solutions. Let a
(h)
n be the solution by ignoring

f(n) and let a
(p)
n be a particular solution then it can be verified that an = a

(h)
n + a

(p)
n

is a solution to the non-homogeneous recurrence.
The following is a table of some particular solutions

d a constant B
dn B1n +B0

dn2 B2n
2 +B1n+B0

edn, e, d are constants Bdn

Here B,B0, B1, B2 are constants to be determined from initial conditions. When
f(n) = f1(n) + f2(n) is a sum of the above functions then we solve the equation
for f1(n) and f2(n) separately and then add them in the end to obtain a particular
solution for the f(n).
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5.3 Generating functions

An alternative representation for a sequence a1, a2 . . . ai is a polynomial function
a1x+a2x

2+. . . aix
i. Polynomials are very useful objects in mathematics, in particular

as ”placeholders.” For example if we know that two polynomials are equal (i.e. they
evaluate to the same value for all x), then all the corresponding coefficients must
be equal. This follows from the well known property that a degree d polynomial
has no more than d distinct roots (unless it is the zero polynomial). The issue of
convergence is not important at this stage but will be relevant when we use the
method of differentiation.
Example 5.3.1 : Consider the problem of changing a Rs 100 note using notes
of the following denomination - 50, 20, 10, 5 and 1. Suppose we have an infinite
supply of each denomination then we can represent each of these using the following
polynomials where the coefficient corresponding to xi is non-zero if we can obtain a
certain sum using the given denomination.

P1(x) = x0 + x1 + x2 + . . .

P5(x) = x0 + x5 + x10 + x15 + . . .

P10(x) = x0 + x10 + x20 + x30 + . . .

P20(x) = x0 + x20 + x40 + x60 + . . .

P50(x) = x0 + x50 + x100 + x150 + . . .

For example, we cannot have 51 to 99 using Rs 50,so all those coefficients are zero.
By multiplying these polynomials we obtain

P (x) = E0 + E1x+ E2x
2 + . . . E100x

100 + . . . Eix
i

where Ei is the number of ways the terms of the polynomials can combine such that
the sum of the exponents is 100. Convince yourself that this is precisely what we are
looking for. However we must still obtain a formula for E100 or more generally Ei,
which the number of ways of changing a sum of i.

Note that for the polynomials P1, P5 . . . P50, the following holds

Pk(1− xk) = 1 for k = 1, 5, ..50 giving

P (x) =
1

(1− x)(1− x5)(1− x10)(1− x20)(1− x50)

We can now use the observations that 1
1−x

= 1 + x2 + x3 . . . and 1−x5

(1−x)(1−x5)
=

1+x2+x3 . . .. So the corresponding coefficients are related by Bn = An+Bn−5 where
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A and B are the coefficients of the polynomials 1
1−x

and 1
(1−x)(1−x5)

. Since An = 1,
this is a linear recurrence. Find the final answer by extending these observations.
Let us try the method of generating function on the Fibonacci sequence.
Example5.3.2 : Let the generating function be G(z) = F0 + F1x+ F2x

2 . . . Fnx
n

where Fi is the i-th Fibonacci number. Then G(z)− zG(z)− z2G(z) can be written
as the infinite sequence

F0 + (F1 − F2)z + (F2 − F1 − F0)z
2 + . . . (Fi+2 − Fi+1 − Fi)z

i+2 + . . . = z

for F0 = 0, F1 = 1. Therefore G(z) = z
1−z−z2

. This can be worked out to be

G(z) =
1√
5

(

1

1− φz
− 1

1− φ̄z

)

where φ̄ = 1− φ = 1
2

(

1−
√
5
)

.

5.3.1 Binomial theorem

The use of generating functions necessitates computation of the coefficients of power
series of the form (1 + x)α for |x| < 1 and any α. For that the following result is very
useful - the coefficient of xk is given by

C(α, k) =
α · (α− 1) . . . (α− k + 1)

k · (k − 1) . . . 1

This can be seen from an application of Taylor’s series. Let f(x) = (1 + x)α. Then
from Taylor’s theorem, expanding around 0 for some z,

f(z) = f(0) + zf ′(0) + α · z + z2
f ′′(0)

2!
+ . . . zk

f (k)(0)

k!
. . .

= f(0) + 1 + z2
α(α− 1)

2!
+ . . . C(α, k) + . . .

Therefore (1 + z)α =
∑∞

i=0C(α, i)zi which is known as the binomial theorem.

5.4 Exponential generating functions

If the terms of a sequence is growing too rapidly, i.e. the n-th term exceeds xn for
any 0 < x < 1, then it may not converge. It is known that a sequence converges iff
the sequence |an|1/n is bounded. Then it makes sense to divide the coefficients by a

31



rapidly growing function like n!. For example, if we consider the generating function
for the number of permutations of n identical objects

G(z) = 1 +
p1
1!
z +

p2
2!
z2 . . .

pi
i!
zi

where pi = P (i, i). Then G(z) = ez. The number of permutations of r objects when
selected out of (an infinite supply of) n kinds of objects is given by the exponential
generating function (EGF)

(

1 +
p1
1!
z +

p2
2!
z2 . . .

)n

= enx =

∞
∑

r=0

nr

r!
xr

Example5.4.1 : Let Dn denote the number of derangements of n objects. Then it
can be shown thatDn = (n−1)(Dn−1+Dn−2). This can be rewritten asDn−nDn−1 =
−(Dn−1 − (n− 2)Dn−2. Iterating this, we obtain Dn − nDn−1 = (−1)n−2(D2 − 2D1).
Using D2 = 1, D1 = 0, we obtain

Dn − nDn−1 = (−1)n−2 = (−1)n.

Multiplying both sides by xn

n!
, and summing from n = 2 to ∞, we obtain

∞
∑

n=2

Dn

n!
xn −

∞
∑

n=2

nDn−1

n!
xn =

∞
∑

n=2

(−1)n

n!
xn

If we let D(x) represent the exponential generating function for derangements, after
simplification, we get

D(x)−D1x−D0 − x(D(x)−D0) = e−x − (1− x)

or D(x) = e−x

1−x
.

5.5 Recurrences with two variables

For selecting r out of n distinct objects, we can write the familiar recurrence

C(n, r) = C(n− 1, r − 1) + C(n− 1, r)

with boundary conditions C(n, 0) = 1 and C(n, 1) = n.
The general form of a linear recurrence with constant coefficients that has two

indices is

Cn,ran,r + Cn,r−1an,r−1 + . . . Cn−k,ran−k,r . . . C0,ra0,r + . . . = f(n, r)
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where Ci,j are constants. We will use the technique of generating functions to extend
the one variable method. Let

A0(x) = a0,0 + a0,1x+ . . . a0,rx
r

A1(x) = a1,0 + a1,1x+ . . . a1,rx
r

An(x) = an,0 + an,1x+ . . . an,rx
r

Then we can define a generating function with A0(x), A1(x)A3(x) . . . as the sequence
- the new indeterminate can be chosen as y.

Ay(x) = A0(x) + A1(x)y + A2(x)y
2 . . . An(x)y

n

For the above example, we have

Fn(x) = C(n, 0) + C(n, 1)x+ C(n, 2)x2 + . . . C(n, r)xr + . . .

∞
∑

r=0

C(n, r)xr =
∞
∑

r=1

C(n− 1, r − 1)xr +
∞
∑

r=0

C(n− 1, r)xr

Fn(x)− C(n, 0) = xFn−1(x) + Fn−1(x)− C(n− 1, 0)

Fn(x) = (1 + x)Fn−1(x)

or Fn(x) = (1 + x)nC(0, 0) = (1 + x)n as expected.

5.6 Probability generating functions

The notion of generating functions have useful applications in the context of proba-
bility calculations also. Given a non-negative integer-valued discrete random variable
X with Pr[X = k] = pk, the probability generating function (PGF) of X is given by

GX(z) =

∞
∑

i=0

piz
i = p0 + p1z + . . . piz

i . . .

This is also known as the z-transform of X and it is easily seen that GX(1) = 1 =
∑

i pi. The convergence of the PGF is an important issue for some calculations
involving differentiation of the PGF. For example,

E[X ] =
dGX(z)

dz
|z = 1
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The notion of expectation of random variable can be extended to function f(X)
of random variable X in the following way

E[f(X)] =
∑

i

pif(X = i)

Therefore, PGF of X is the same as E[zX ]. A particularly useful quantity for a
number of probabilistic calculations is the Moment Generating Function (MGF)
defined as

MX(θ) = E[eXθ]

Since

eXθ = 1 +Xθ +
X2θ2

2!
+ . . .

Xkθk

k!
. . .

MX(θ) = 1 + E[X ]θ + . . .
E[Xk]θk

k!
. . .

from which E[Xk] also known as higher moments can be calculated. There is also
a very useful theorem known for independent random variables Y1, Y2 . . . Yt. If Y =
Y1 + Y2 + . . . Yt, then

MY (θ) = MY1(θ) ·MY2(θ) · . . .MYt
(θ)

i.e., the MGF of the sum of independent random variables is the product of the
individual MGF’s.

5.6.1 Probabilistic inequalities

In many applications, especially in the analysis of randomized algorithms, we want to
guarantee correctness or running time. Suppose we have a bound on the expectation.
Then the following inequality known as Markov’s inequality can be used.
Markov’s inequality

Pr[X ≥ kE[X ]] ≤ 1

k
(5.6.1)

Unfortunately there is no symmetric result.
If we have knowledge of the second moment, then the following gives a stronger

result
Chebychev’s inequality

Pr[(X − E[X ])2 ≥ t] ≤ σ2

t
(5.6.2)

where σ is the variance, i.e. E2[X ]− E[X2].
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With knowledge of higher moments, then we have the following inequality. If
X =

∑n
i xi is the sum of n mutually independent random variables where xi is

uniformly distributed in {-1 , +1 }, then for any δ > 0,
Chernoff bounds

Pr[X ≥ ∆] ≤ e−λ∆E[eλX ] (5.6.3)

If we choose λ = ∆/n, the RHS becomes e−∆2/2n using the inequality 1
2
(eα + e−α) ≤

e−α2/2.

5.7 Problem Set

1. Find a recurrence for the number of ways a frog can jump n stairs if each step
covers either 1 or 2 or 3 stairs.

2. Find a recurrence for the number of n-digit binary sequences with no consecutive
1’s. Repeat the same for ternary sequences.

3. Find a recurrence for the number of n digit ternary sequences in which no 2
appears anywhere to right of any 1.

4. Find a recurrence for te number of ways to pick k objects with repetition from
n types.

5. Find a recurrence relation for the number of permutatins of the first n integers
such taht each integer differs by one (except for teh first) from some integer to
the left of it in the permuation.

6. Find a recurrence for computing the number of spanning trees in the ”ladder”
graph with n rungs (2n vertices).

7. Gossip is spread among r people via telephone. Specifically, in a conversation
between A and B, A tells B all the gossip he has heard and B does the same.
Let ar denote the number of calls among r people such taht the gossips will be
known to everyone and write a recurrence for ar.

8. Let ar denote the number of partitions of a set of r elements. Show that

ar+1 =

r
∑

i=0

C(r, i)ai

where a0 = 1.
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9. Let ar denote the number of subsets of the set {1, 2, . . . r} that do not contain
two consecutive numbers. Determine ar.

10. In predicting future discoveries of oil, the assumptin is that the teh amount
discovered next year will be average of te amount discovered this year and the
last year. Write a recurrence for an and solve it.

11. In a singles tournament, 2n players are paired off in n matches and f(n) is the
number of ways in which this is done. Write a recurrence for f(n) and solve it.

12. If Fn is the n-th Fibonacci number, find a simple expression for F1+F2+ . . . Fn

which invoves Fp for only one p.

13. Consider a variation of the Tower of Hanoi problem where we have to move
disks from A to B such that no disk can be moved directly from A to B. What
is the minimum number of moves.

14. What is the number of distict spanning trees of complete graph ? (Two distinct
spanning trees will have different edge sets).
Solution We will prove that it is nn−2, n ≥ 2, which was first proved by Cayley.
We will first prove the following claim The number of spanning trees with degree
sequence (d1, d2 . . . dn) =

(n− 2)!

d1 − 1!d2 − 1! . . . dn − 1!

where the degree sequence corresponds to i-th vertex having degree di.

Proof: basis for n=2, it is 1.
Suppose it is true upto m−1 ≥ 2. Given a tree on m nodes, we know that there
is at least one vertex of degree one, say vj and it is connected to vertex vi. If
we pluck out vj, then we are left with a m−1 vertices and degree of vi is di−1.
We can now apply the inductive hypothesis to the graph with m−1 nodes, i.e.,

(m−3)!
d1−1!d2−1!...di−1!..

. Since the degree 1 node can be attached to any of the vertices,
we have the same number of trees for each of the m−1 edges. We are in essence,
looking at the degree 1 vertices attached to all possible nodes - v1tovm−1 and
by addition principle we can add then up. Notice that the degree sequnces are
different in each case. If more than one vertex has degree 1 connected to vj ,
note that it suffices to consider any one of them, since there is only one way
that can be connected. Summing over all instances of di we obtain

∑

di≥1

(m− 3)!

(d1 − 1)!(d2 − 1!) . . . (di − 2!)..(dj − 1) . . .
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Multiplying by numerator and denominator di − 1, we obtain

(m− 2)! · (di − 1)

d1 − 1!d2 − 1! . . . di − 1!..
.

Summing over all degree sequences

∑

di≥1

(n− 3)!di − 1

d1 − 1!d2 − 1! . . . di − 2!..(dj − 1) . . .

Since
∑

i(di − 1) = 2(m − 2) + 1 − (m − 1) = m − 2, the induction proof is
complete. ✷

Now we add up the previous bounds over all degree sequences to obtain

∑

d1,d2≥1,d1+d2...dn=2(n−2)

(n− 3)!di − 1

d1 − 1!d2 − 1! . . . di − 2!..(dj − 1) . . .

This is a multinomial which gives us nn−2.

15. What is the average root-leaf distance of an oriented rooted tree with n nodes
?

Proof: The path length can be viewed as lengths of internal path I (concerning
internal nodes) and external path E (pertaining to the leaf nodes). We can
write E = I + 2n where n is the number of internal nodes including the root
node since there are two external nodes for every terminal internal node. We
will make use of a two dimensional recurrence

B(w, z) =
∑

n,p≥0

=
∑

bn,pw
pzn

where bn,p is the number of binary trees with n nodes and internal path length
p.
For example (by brute force calculation)

B(w, z) = 1 + z + 2wz2 + (w2 + 4w3)z3 + . . .

Clearly B(1, z) = generating function for number of (oriented) trees with n
nodes.

bn,p =
∑

k+l=n−1;r+s+n−1=p

bk,rbl,s
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It follows that zB2(w,wz) = B(wz)− 1.
By taking the partial deriuvative wrt z we obtain

2zB(w,wz)(Bw(w,wz) + zBz(w,wz)) = Bw(w, z)

Let H(z) is the generating function for the total internal path length with n
nodes, then

H(z) = Bw(1, z) =
∑

i

hiz
n.

Moreover H(z) = 2zB(z) = (H(z)+zB′(z).) Using the formula for B(z) (Cata-
lan numbers),

H(z) =
1

1− 4z
− 1

z

(

1− z

sqrt1− 4z
− 1

)

giving

hn = 4n − 3n+ 1

n + 1
C(2n, n)

The average value of total internal path length is hn/bn and average value of
path length of a node is hn/nbn. The asymptotic value of this is

√
πn−3+O(1).

✷
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Chapter 6

Modular Arithmetic

In this chatper, we will discuss some useful properties of numbers when calculations
are done modulo n, where n > 0. In the context of computer science, n is usually a
power of 2 since representation is binary.

6.1 Divisibility

Definition 6.1.1 An integer b is divisible by an integer a (a 6= 0), if there is an
integer x such that b = ax. This will be denoted by a|b.

We begin by formalising some elementary observations about integer division.

Theorem 6.1.2 1. a|b implies a|bc for any integer c.

2. a|b and b|c implies a|c.

3. a|b and a|c implies a|bx+ cy.

4. if m 6= 0 then a|b ≡ ma|mb.

Theorem 6.1.3 (Divison Algorithm) Given integers a and b with a > 0, there
exist unique integers q and r such that b = qa+ r, 0 ≤ r < a.

Definition 6.1.4 The gcd of two numbers a and b is the largest among the common
divisors of a and b. If this is 1 then a, b are relatively prime.

The following properties of gcd(x, y) are known

Theorem 6.1.5 1. If c is a common divisor of a, b, then c|gcd(a, b).

2. gcd(x, y) = min{ax+ by} where x, y are integers, such that ax+ by > 0.
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3. m · gcd(a, b) = gcd(ma,mb).

4. If gcd(a,m) = gcd(b,m) = 1 then gcd(ab,m) = 1.

5. If c|ab and gcd(b, c) = 1 then c|a.

6. gcd(a, b) = gcd(a, b− qa)for any q

The beginning of number theory goes back to Euclid’s algorithm that exploited
some of the properties of divisibility to compute the gcd of two integers.From property
6, it follows that to fing gcd of a and b we can find gcd of a and b-qa(repeatedly). If
a|b,then clearly a is the gcd, so that can be used as a terminating case. Computing q
can be done using the division algorithm which is how Euclid’s algorithm works. In
addition, it also computes numbers x and y such that gcd = ax + by. For this, we
maintain an invariant that axi+byi = ri where ri is the remainder in the i-th iteration
with initial values x0 = 1 and y0 = 0. And this is what is known as Extended Euclid’s
algorithm. The correctness of the algorithm follows from induction.

Prime numbers (with no divisors other than 1 and the number itself) are extremely
important in number theory.

Theorem 6.1.6 (Fundamental Theorem of Arithmetic)
Every positive integer can be expressed as product of primes and this factorization is
unique except for the order of the prime factors.

Proof: We know that if p|q1q2 where p is prime then either p|a or p|b or both. ✷

The fact that number of primes is infinite was given in an elegant proof of Euclid.
Extending his argument it can be shown that there are arbitrary gaps between two
primes. The prime number theorem says that among the first n integers there are
very nearly n

lnn
prime numbers.

6.2 Congruences

Definition 6.2.1 If an integer m, not zero, divides the difference a− b, we say that
a is congruent to b modulo m and is denoted by a ≡ b(modm).

(Since m|(a− b) is equivalent to −m|(a− b), we will always assume that m > 0.)
The following properties follow from the definition.

Theorem 6.2.2 1. a ≡ b(modm) is the same as a− b ≡ 0(modm).

2. a ≡ b(modm) and b ≡ c(modm) implies a ≡ c(modm). (transitive - infact
≡ (modm) is an equivalence relation).
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3. If a ≡ b(modm) and c ≡ d(modm) then ax+ cy ≡ bx+ dy(modm)

4. If a ≡ b(modm) and c ≡ d(modm), then ac ≡ bd(modm)

5. If a ≡ b(modm) and d|m, d > 0, then a ≡ b(modd).

The degree of a polynomial (with integral coefficients) modulo m is the highest
power of x for which the coeffient is non-zero modulo m. For f(x) = a0x

n+ a1x
n−1+

. . . an, if f(u) ≡ 0(modm) then we say that u is a solution of the congruence f(x) ≡
0(modm). It is known that

Theorem 6.2.3 If a ≡ b(modm), then f(a) ≡ f(b)(modm)

An important problem is the solution of congruences and in particular linear (degree
1) congruence. Any such congruence has the form

ax ≡ b(modm)

For the special case that gcd(a,m) = 1, we have a solution x1 = aφ(m)−1b, where φ(m)
is the totient function (defined by Euler). It is the number of integers less than m
that are relatively prime to m (if m is prime then φ(m) = m− 1). This follows from
the following theorem of Euler.

Theorem 6.2.4 If gcd(a,m) = 1, then aφ(m) ≡ 1(modm).

Another way of viewing the solution is to multiply both sides by a number a−1 such
that a · a−1 ≡ 1(modm). We have the following equivalent of cancellation laws

Theorem 6.2.5 1. If ax ≡ ay(modm) and gcd(a,m) ≡ 1(modm) then x ≡
y(modm).

2. ax ≡ ay(modm) iff x ≡ y(mod m
gcd(a,m)

). (generalization)

The remaining solutions (when gcd(a,m) = 1) are of the form x1+ jm for any integer
j. In other words there is a unique solution modulo m. For the other case (when a
and m are not relatively prime), the solutions are described by the following theorem.

Theorem 6.2.6 Let g = gcd(a,m). Then ax ≡ b(modm) has no solutions if g does
not divide b. If g|b, it has g solutions x ≡ (b/g)x0 + t(m/g), t = 0, 1 . . . g − 1, where
x0 is any solution of (a/g)x ≡ 1(mod(m/g)).

Algorithmically, in both cases, we can use the (extended) Euclid’s algorithm to
compute x1 or x0.

An alternate method is to solve a set of simultaneous congruences by factorising
m =

∏k
i=1 p

ei
i =

∏k
i=1mi where mi = peii . Since mi are relatively prime in pairs,
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it can be shown that solving the congruence ax ≡ b(modm) is the same as solving
the congruences ax ≡ b(modmi) simultaneously for all i. Suppose the individual
congruences have solutions

axi ≡ b(modmi)

Then these can be combined using a result called Chinese Remaindering Theorem.

Theorem 6.2.7 The common solution is given by

x0 =

k
∑

j=1

m

mj
bjxj

where bj is given by solutions to (m/mj)bj ≡ 1(modmj).

6.3 Problem Set

1. Prove that an integer is divisible by 9 iff the sum of its digits is divisible by 9.

2. Prove that an integer is divisible by 11 iff the difference between the sum of the
digits in the odd places and the sum of the digits in the even places is divisible
by 11.

3. Give an easy test for divisibility by 7.

4. If p is a prime > 5, then prove that it divides infinitely many of the integers
9,99,999,9999 ...

5. For what integer values of n, 2n + 1 is divisible by 3 ?

6. Is any prime of the form 3k+1 is of the form 6k+1 ?Justify.

7. Prove that if 2n+1 is a prime then n is power of 2 and if 2n− 1 is a prime then
n is a prime.

8. Prove that there can be arbitrary gaps between two consecutive primes.

9. Given any positive integer k,prove that there are k-consecutive integers divisible
by a square> 1.

10. Given n > 2,prove that there exists a prime p such that n < p < n!.

11. A positive integer is said to be a square-free if it is product of distinct primes.What
is the largest number of consecutive square-free positive integers ?
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12. Find the gcd of 2613 and 2171 by Euclidean algorithm.

13. Find two integers x and y such that gcd(841,160)=841x+160y.Are these x and
y unique?

14. Find x and y such that

(a) 243x+ 198y = 9

(b) 71x− 50y = 1

(c) 6x+ 10y + 15z = 1

15. For what integer values of d,exist two integers x and y such that 21x+35y = d?

16. Find all the solutions to the congruences

(a) 13x ≡ 4(mod25)

(b) 5x ≡ 2(mod26)

(c) 9x ≡ 12(mod15)

(d) 6x ≡ 3(mod210

17. Solve 17x ≡ 9mod276 ,by using Chinese Remainder Theorem.

18. Find an integer x such that19x ≡ 103mod900 and10x ≡ 511 mod 841.

19. Find all integers that give the remainder 1,2,4 when divided by 3,5,4 respec-
tively.

20. When eggs in a basket are taken out 2,5,9,23 at a time,there remain respectively
1,3,7,19 eggs.Find the smallest number of eggs in the basket.
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