
SGXGauge: A Comprehensive Benchmark Suite for
Intel SGX

Sandeep Kumar
School of Information Technology

Indian Institute of Technology, Delhi
New Delhi, India

Email: sandeep.kumar@cse.iitd.ac.in

Abhisek Panda
Department of Computer Science

Indian Institute of Technology, Delhi
New Delhi, India

Email: abhisek.panda@cse.iitd.ac.in

Smruti R. Sarangi
Department of Computer Science

Indian Institute of Technology, Delhi
New Delhi, India

Email: srsarangi@cse.iitd.ac.in

Abstract—Trusted execution environments (TEEs) such as
Intel SGX facilitate the secure execution of an application on
untrusted machines. A plethora of work focuses on improving
the performance of such environments necessitating the need
for a standard, widely accepted benchmark suite. We present
SGXGauge, a benchmark suite for SGX containing a diverse
set of workloads from different domains. We also thoroughly
characterize the behavior of the benchmark suite on a native
platform and on a platform that uses a library OS-based shim
layer (GrapheneSGX).

Index Terms—Intel SGX, benchmark, EPC, library operating
system

I. INTRODUCTION

Intel Secure Guard eXtension or Intel SGX [1], [2] has
gained popularity in recent years as a way to securely execute
an application on a remote, untrusted machine. The security
of the application and data within SGX, i.e., confidentiality,
integrity, and freshness are guaranteed by the hardware.

However, this protection comes at a cost in terms of certain
restrictions on the applications running within SGX, such as
the lack of support for system calls since the operating system
is not a part of the trusted framework of SGX [2], and a limited
amount of secure memory called the enclave page cache or
EPC. Applications allocating more memory than the EPC incur
a significant amount of performance overhead [2], [3].

Researchers have focused on alleviating this problem by
proposing different mechanisms and workarounds to reduce
the overheads [4], [5], [6], [7], [8], [3]. To show the benefits
of their methods, researchers have resorted to manual porting
of applications to Intel SGX [9], [10]. However, porting
an application requires significant expertise and development
effort [9]. Also, the decision of which application to port is
generally motivated by the ease of porting, and not necessarily
by the gains accrued by doing so. Hence, there is no accepted,
standard method for benchmarking SGX-based systems pri-
marily due to the ad hoc nature of workload creation.

A benchmark suite needs to thoroughly evaluate all the
critical components of Intel SGX, and enable performance
comparison by setting a common denominator across different
proposals – this is missing in prior work [9], [11]. We present
SGXGauge – a comprehensive benchmark suite for Intel SGX.
SGXGauge contains 10 real-world and synthetic benchmarks

Fig. 1: Allocating beyond the EPC size increases the overhead.
The baseline is a Vanilla (non-SGX) setting with the same
input size. For EPC evictions the baseline is the Low setting.

from different domains that thoroughly evaluate all the critical
components of Intel SGX.

II. MOTIVATION

Limited work has been done in this area, mainly due to the
limitations of the Intel SGX framework and the engineering
effort required to port an application to SGX. Hasan et al. [9]
and Fu et al. [11] ported LMbench and Nbench to SGX:
LMbench-SGX and Nbench-SGX, respectively. LMbench-
SGX mainly focuses on the memory bandwidth and the system
call latencies. Nbench-SGX contains CPU-intensive workloads
and is designed to check the efficiency of integer and floating-
point operations on a CPU.

Impact of the EPC: The limited amount of EPC memory
is one of the biggest challenges in SGX [3], [2]. Many
applications’ working-set is greater than the EPC, which forces
SGX to move the pages to untrusted memory (after securing
them). In case of an access to an evicted page (an EPC fault),
SGX brings back the page back to the EPC. These EPC faults
are common and incur performance overheads. As shown in
Figure 1, on crossing the EPC boundary the number of dTLB
misses increases by 91×, page table walk cycles by more than
124×, and EPC evictions by 100× as compared to when the
memory footprint is less than the EPC size. Hence, analyzing



TABLE I: Terminology

Execution Modes
Vanilla An application executing without Intel SGX support.
Native A ported application executing within Intel SGX.
LibOS An application executing with GrapheneSGX (a library OS) [15].

Input Settings (I/P)
Low: memory < EPC, Medium: memory ≈ EPC, High: memory > EPC

TABLE II: Description of the workloads in SGXGauge along
with the specific settings used in the paper. (Thr: Threads)

Workload Native LibOS I/P: Low , Medium, High Thr
Blockchain [18] ✓ ✓ Blocks 3, 5, 8 12
OpenSSL [13] ✓ ✓ File 76 MB, 88 MB, 151 MB 1
B-Tree [19] ✓ ✓ Elements 1 M, 1.5 M, 2 M 1
HashJoin [20] ✓ ✓ Table 61 MB, 91 MB, 122 MB 1
BFS [21] ✓ ✓ Nodes 70 K, 100 K, 150K

Edges 909 K, 1.3 M, 1.9 M
1

PageRank [21] ✓ ✓ Nodes 4,500, 4,750, 5,000
Edges 10.1 M, 11.2, 12.5

1

Memcached [22] ✗ ✓ Records: 50 K, 100 K, 200 K 1
XSBench [23] ✗ ✓ Points: 53 K, 88 K, 768 K 1
Lighttpd [24] ✗ ✓ Requests: 50 K, 60 K, 70 K. 16
SVM [25] ✗ ✓ Data 4 K, 6 K, 10 K

Features 128
1

the impact of the EPC size on the performance is crucial – a
fact ignored by LMbench-SGX [9] and Nbench-SGX [10].

Real-world Benchmarks: Real-world applications exhibit
different phases during their execution. A typical pattern is
that an application will read some data from the file system,
process it, and then store the results. Micro-benchmarks such
as Nbench [12] lack this phase change behavior and thus do
not represent a real-world scenario.

III. SGXGAUGE BENCHMARK SUITE

To select the benchmarks for SGXGauge1 (see Table II),
we selected workloads that have been used by highly cited
works using SGX in the recent past. Our main aim was to
ensure that every component of SGX is stressed and evaluated
by SGXGauge. There are three main sources of overhead
in Intel SGX: encryption/decryption, enclave transitions, and
EPC faults. First, we selected some of the most commonly
used workloads such as OpenSSL [13], [14] and Lighttpd [15],
[8], [16] that stress the enclave transition mechanism. To stress
the CPU, we selected the Blockchain workload, which is a
CPU-intensive and multi-threaded workload. However, while
it stresses the CPU, it does not use a lot of memory. To
ensure both the components are stressed, we opted for an
HPC workload XSBench [17]. In order to exclusively stress
the EPC, we selected the following from prior work: B-Tree,
BFS, HashJoin, and PageRank. Each of them has different data
access patterns.

IV. EVALUATION

Here, we discuss the performance of workloads in SGX-
Gauge under different execution modes and with different

1https://github.com/srsarangi/SGXGauge/

TABLE III: The overhead in performance (run time) and other
system events. Avg. value of EPC evictions is reported when
compared with the Vanilla mode.

Native Mode w.r.t Vanilla (6 workloads)
Over-
head

dTLB
misses

Walk
Cycles

Stall
cycles

LLC
misses

EPC
Evicts

Low 2.0× 8.38× 29.7× 2.5× 1.8× 21.5 K
Medium 3.0× 14.6× 57.0× 5.3× 2.0× 49.6 K
High 3.4× 17.48× 59.1× 6.4× 3.0× 79.6 K

LibOS Mode w.r.t Vanilla (10 workloads)
Low 2.03× 40.6× 517× 114× 24× 796 K
Medium 3.13× 59.7× 724× 146× 18.5× 1,792 K
High 3.7× 44.0× 113× 12.7× 15.5× 2,255 K

{

11x

Fig. 2: Performance impact of SGX on applications in the
Native mode for different input sizes.

input settings (see Table I). Table III shows an overview of the
evaluation results. Our test system uses a single-socket Intel
Xeon E-218G CPU with 32 GB of DRAM. The size of the
usable secure memory (EPC) is 92 MB. A LibOS allows the
execution of an unmodified binary on SGX; thus, saving on
the high cost and effort of porting the application [9]. We use
GrapheneSGX [15] for our experiments in the LibOS mode.

Native Mode Performance: As shown in Figure 2, the
performance overhead increases by an average of 50% as we
go from the Low to the Medium setting, and by an average
of 13% from the Medium to the High setting because of
the following reasons. We see an unusually high performance
overhead for HashJoin as it implements an “equi-join” logic
that needs multiple iterations over the entire hash table. The
total number of EPC evictions increases by an average of
130% when the input size is increased from Low to Medium.
On further increasing the input from Medium to High, the
total number of EPC evictions increases by an average of 60%.
As we increase the size from Low to Medium, dTLB misses
increase by an average of 74%, and then by 19% as we go
from Medium to High mainly due to EPC faults. Consequently,
the total stall cycles increase by an average of 110% (Low to
Medium), and by 20% while going from Medium to High.

LibOS Mode Performance: The performance overhead in-
creases by an average of 54% while going from Low to
Medium, and by up to 18% while going from Medium to High
(not shown). The total number of dTLB misses, walk cycles,
and stall cycles increase by an average of 47%, 40%, and
28% as we go from Low to Medium, respectively. However,
the same metrics drop by 26%, 84%, and 91% as we go from
Medium to High, respectively. This is because in this setting,



the overhead of the LibOS is somewhat hidden due to the long
execution time of the benchmarks. The performance still drops
in this setting (Medium to High) because of an increase in the
total number of EPC faults (25% on an average).

V. CONCLUSION

We introduced SGXGauge, a benchmark suite for Intel
SGX that captures a holistic view of the performance of
applications running in such TEEs – this includes the impact
of the EPC memory. SGXGauge contains diverse benchmarks
that affect different components of SGX. We also performed
an evaluation of the performance of SGX in LibOS mode and
showed that there is a marked difference in behavior as the
memory footprint crosses the EPC size limit.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
insightful comments. This work was funded in part by the
Semiconductor Research Corporation (SRC) via grant IR-
3053.

REFERENCES

[1] “Academic Research — Intel Software Guard Extensions —
Intel Software,” https://software.intel.com/en-us/sgx/documentation/
academic-research, 2019, (Accessed on 11/18/2019).

[2] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[3] X. Liu, W. Wang, L. Wang, X. Gong, Z. Zhao, and P.-C.
Yew, “Regaining Lost Seconds: Efficient Page Preloading for SGX
Enclaves,” in Proceedings of the 21st International Middleware
Conference, ser. Middleware ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 326–340. [Online]. Available:
https://doi.org/10.1145/3423211.3425673

[4] M. Taassori and A. Sha, “VAULT : Reducing Paging Overheads in
SGX with Efficient Integrity Verification Structures,” Proceedings of
the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’18), pp.
665–678, 2018.

[5] Sergei Arnautov and Bohdan Trach and Franz Gregor and Thomas
Knauth and Andre Martin and Christian Priebe and Joshua Lind and
Divya Muthukumaran and Dan O’Keeffe and Mark L. Stillwell and
David Goltzsche and Dave Eyers and Rüdiger Kapitza and Peter
Pietzuch and Christof Fetzer, “SCONE: Secure linux containers with
intel SGX,” in 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 16). Savannah, GA: USENIX Association,
Nov. 2016, pp. 689–703. [Online]. Available: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

[6] H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv,
and N. Milshten, “Switchless Calls Made Practical in Intel SGX,”
in Proceedings of the 3rd Workshop on System Software for Trusted
Execution, ser. SysTEX ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 22–27. [Online]. Available:
https://doi.org/10.1145/3268935.3268942

[7] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS Services for SGX Enclaves,” ser. EuroSys ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3064176.3064219

[8] O. Weisse, V. Bertacco, and T. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” ser. ISCA ’17.
ACM, 2017, pp. 81–93.

[9] A. Hasan, R. Riley, and D. Ponomarev, “Port or Shim? Stress Testing
Application Performance on Intel SGX,” in 2020 IEEE International
Symposium on Workload Characterization (IISWC), 2020, pp. 123–133.

[10] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “Sgx-Lapd: Thwarting
Controlled Side Channel Attacks via Enclave Verifiable Page Faults,” in
RAID, 2017.

[11] ——, “utds3lab/sgx-nbench: The nbench benchmark ported to
SGX.” https://github.com/utds3lab/sgx-nbench, 2019, (Accessed on
09/23/2019).

[12] BYTE, “Nbench,” https://www.math.utah.edu/∼mayer/linux/bmark.
html, 1995, (Accessed on 09/23/2019).

[13] OpenSSL, “Openssl,” https://www.openssl.org/, 2019, (Accessed on
12/07/2019).

[14] Intel, “intel/intel-sgx-ssl: Intel® Software Guard Extensions SSL,” https:
//github.com/intel/intel-sgx-ssl, (Accessed on 06/23/2021).

[15] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX,” in USENIX Annual
Technical Conference, 2017.

[16] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and Efficient Multitasking Inside a Single Enclave of
Intel SGX,” ser. ASPLOS ’20. New York, NY, USA: Association for
Computing Machinery, 2020.

[17] S. Yadalam, V. Ganapathy, and A. Basu, “SGXL: Security and Per-
formance for Enclaves Using Large Pages,” ACM Trans. Archit. Code
Optim., vol. 18, pp. 12:1–12:25, 2021.

[18] S. Mohapatra, “mohaps/libcatena: a blockchain written in C++ for learn-
ing purposes,” https://github.com/mohaps/libcatena, 2019, (Accessed on
09/23/2019).

[19] Reto Achermann, “mitosis-project/mitosis-workload-btree: The BTree
workload used for evaluation.” https://github.com/mitosis-project/
mitosis-workload-btree, September 2020, (Accessed on 10/03/2020).

[20] ——, “mitosis-project/mitosis-workload-hashjoin: The HashJoin
workload used for evaluation.” https://github.com/mitosis-project/
mitosis-workload-hashjoin, September 2020, (Accessed on 10/03/2020).

[21] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” SIGPLAN Not., vol. 48, no. 8,
p. 135–146, Feb. 2013. [Online]. Available: https://doi.org/10.1145/
2517327.2442530

[22] “memcached - a distributed memory object caching system,” https://
memcached.org/, 2019, (Accessed on 11/18/2019).

[23] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - The
Development and Verification of a Performance Abstraction for Monte
Carlo Reactor Analysis,” in PHYSOR 2014 - The Role of Reactor
Physics toward a Sustainable Future, Kyoto, 2014. [Online]. Available:
https://www.mcs.anl.gov/papers/P5064-0114.pdf

[24] A. Bogus, Lighttpd installing, compiling, configuring, optimizing, and
securing this lightning-fast Web Server / Andre Bogus. Birmingham,
UK: Packt Publishing, 2008.

[25] M. A. Hearst, “Support vector machines,” IEEE Intelligent Systems,
vol. 13, no. 4, p. 18–28, Jul. 1998. [Online]. Available: https:
//doi.org/10.1109/5254.708428


