FluidCheck: A Redundant Threading based Approach for Reliable
Execution in Manycore Processors

RAJSHEKAR KALAYAPPAN, Indian Institute of Technology Delhi
SMRUTI R. SARANGI, Indian Institute of Technology Delhi

Soft errors have become a serious cause of concern with reducing feature sizes. The ability to accommo-
date complex, SMT cores on a single chip presents a unique opportunity to achieve reliable execution, safe
from soft errors, with low performance penalties. In this context, we present FluidCheck, a checker archi-
tecture that allows highly flexible assignment and migration of checking duties across cores. In this paper,
we present a mechanism to dynamically use the resources of SMT cores for checking the results of other
threads, and propose a variety of heuristics for migration of such checker threads across cores. Secondly, to
make the process of checking more efficient, we propose a set of architectural enhancements that reduce
power consumption, decrease the length of the critical path, and reduce the load on the NoC. Based on our
observations, we design a 16 core system for running SPEC2006 based bag-of-tasks applications. Our ex-
periments demonstrate that fully reliable execution can be attained with a mere 27% slowdown, surpassing
traditional redundant threading based techniques by roughly 42%.

CCS Concepts: *Computer systems organization — Reliability; Processors and memory architec-
tures; Redundancy;

Additional Key Words and Phrases: Reliability, Checker architectures, Redundant multi-threading

ACM Reference Format:

Rajshekar Kalayappan and Smruti R. Sarangi, 2015. FluidCheck: A Redundant Threading based Approach
for Reliable Execution in Manycore Processors. ACM Trans. Architec. Code Optim. V, N, Article 1 (January
2015), 25 pages.

DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

For! the last 15 years, the designing of processors that have reduced susceptibility
to soft errors is an area of active research. There is a wealth of research in creat-
ing radiation hardened circuits [Montesinos et al. 2007], and architectures to detect
and correct soft errors (refer to the survey by Kalayappan et al. [Kalayappan and
Sarangi 2013]). Unfortunately, techniques at the circuit level are still considered fairly
intrusive, are known to increase area and power consumption disproportionately, and
also provide insufficient error coverage. Consequently, efforts in both industry and
academia have focused on creating novel processor architectures that detect soft er-
rors by using redundant computational units such as additional threads or cores. The
field has come a long way since the early proposals such as the dynamic implementa-
tion verification architecture (DIVA) [Austin 1999], simultaneous redundant thread-
ing (SRT) [Reinhardt and Mukherjee 2000] and Active-stream / Redundant-stream Si-
multaneous Multithreading (AR-SMT) [Rotenberg 1999]. However, the basic design

INew Paper, Not an Extension of a Conference Paper

Rajshekar Kalayappan and Smruti R. Sarangi are with the Department of Computer Science & Engineering,
Indian Institute of Technology Delhi, New Delhi — 110016. E-mail: {rajshekark, srsarangi}@cse.iitd.ac.in
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© 2015 ACM. 1544-3566/2015/01-ART1 $15.00

DOI: http:/dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:2 R. Kalayappan et al.

methodology is still the same. For each application thread, we create two threads:
a leader and a checker. The leader thread executes all the instructions and supplies
hints to the checker thread such as memory values, and branch outcomes. The checker
thread checks either all or a subset of the instructions executed by the leader. It uti-
lizes the hints to speed up its execution and reduce power. Research work has mainly
focused on designing effective architectures to reduce the communication between the
leader and checker [Subramanyan et al. 2010], increase the performance of the overall
system [Chatterjee et al. 2000], and reduce power [Rashid et al. 2005].

To the best of our knowledge, the problem of designing a checker architecture for
manycore processors (16+ cores) where each core can simultaneously run multiple
threads is still open. We have tried to solve this problem by introducing a novel method
called FluidCheck. We begin by explaining the basic features of our design in the con-
text of a 16 core processor, where each core supports 4 way-SMT. Note that it is not nec-
essary to run 4 threads on a core to realize its potential. An SMT processor optimally
partitions the issue slots among its executing threads to maximize the utilization of
resources. For example, if there are 2 threads running on a core, each thread will on
an average get half of the issue slots. Now, if we want to run 24 applications, then we
will have 24 leader threads, and 24 checker threads. Scheduling these 48 threads on
16 cores with the aim of maximizing the mean performance of a suite of applications
is a very difficult problem. We need to ensure that high IPC leaders are not paired
with high IPC checkers on the same core, there are as few thread migrations as pos-
sible, and no thread gets unnecessarily slowed down. We propose several scheduling
algorithms to solve this problem. Additionally, in this scenario 24 leaders need to send
hints to their checkers via the on-chip network (NoC). We need to minimize the in-
formation sent from leaders to checkers such that there are no traffic bottlenecks in
the NoC, and the network energy (which can be significant) is minimized. We propose
novel forwarding filters in this paper that reduce the amount of traffic.

We perform an exhaustive evaluation for different load scenarios with bag-of-tasks
based applications from the SPEC CPU2006 benchmark suite. We show that Flu-
idCheck achieves reliable execution with a performance penalty of 27.51% (under
average load conditions), which surpasses the performance of traditional redundant
threading based techniques by 42%. The energy consumed was also studied and found
to be similar to the seminal proposals in this field (around 91% more than the un-
reliable execution case). The NoC bandwidth usage was found to be modest, with an
average activity rate of around 0.56 flits/core/cycle.

We discuss related work in Section 2, look at the characteristics of applications and
derive insights in Section 3, show our implementation in Sections 3.2 and 4, discuss
the heuristics governing the dynamic migration of checker threads in Section 5, and
show our evaluation results in Section 6.

2. RELATED WORK AND BACKGROUND

We can categorize checker architectures with respect to three important criteria as
shown in Figure 1. First, we can have redundancy at either the core level (a separate
core, or a dedicated checker), thread level (separate thread) or instruction level. Sec-
ond, we can either aim to have full coverage (all the instructions are verified for correct
outputs), or partial coverage (a subset of instructions are verified). Lastly, the different
redundant entities can be fully independent of each other (traditional DMR), or one of
them (known as the checker) can lag behind the other (leader), and be assisted by the
latter with branch hints, and memory values.

We now look at the design space of checker architectures that is the most relevant to
this paper. FluidCheck is a solution at the core level as well as the thread level. This
is because the leader and the checker threads need not be running on the same core.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:3

[
DMR/TMR " % ?
IBM G5 Dual Use 8l 2
NSAA [Spainhower et al. 1999] [Ray et al. 2001] S 8 &
[Bernick et al. 1999] Q.
Selective Replication | = o
[Vera et al. 2010]] %
E -
1 5 g
SpeclV Opportunistic S
[Kumar et al. 2008] [Gomaa et al. 2005]
CRT s
DIVA [Mukherjee et al. 2002] SRT gl oo
[Austin 1999] [Reinhardt et al. 2000] @ = o
MRE 2l £¢
[Subramanyan et al. 2010] £ 2
CGVP AR-SMT O O
; [SN)
[Rashid et al. 2005] FluidCheck [Rotenberg 1999]
Core-level Thread-level Instruction-level

Fig. 1: Related work

Checker threads most of the time run on separate SMT capable cores. Our solution
guarantees full coverage, and the leader threads assist the checker threads. As per
Figure 1, the only other paper that fits all of these criteria is CRT [Mukherjee et al.
2002]. We shall thus discuss CRT and related proposals that use assisted checking with
full coverage first. We shall then briefly describe more conceptually distant classes that
use independent checkers, or provide partial coverage.

2.1. Assisted Checking with Full Coverage

DIVA [Austin 1999] is one of the seminal works in assisted checking. Here, a checker
processor is attached to the end of a regular processor’s (leader’s) pipeline. The role
of the checker is to re-execute each and every instruction and verify the results com-
puted by the leader. Both the computation (ALU operations), and the communication
(data flow across instructions) are checked. Whenever, there is a discrepancy the leader
flushes its pipeline. Later variants of DIVA [Chatterjee et al. 2000] proposed several
performance enhancing optimizations such as a small LO cache to to aid the checker, a
small checker register file and a checker store queue.

Instead of having dedicated checker hardware, alternative approaches advocated us-
ing an additional thread to perform the role of checking in multithreaded processors.
The IBM G5 initially used such an approach and compared results every cycle. How-
ever, in modern SMT processors it is difficult to ensure that the leader and checker run
in lockstep. Alternatively, (AR-SMT) [Rotenberg 1999] and Simultaneous Redundant
Threading (SRT) [Reinhardt and Mukherjee 2000] propose to have a time lag between
the leader and checker threads. This is done to allow the leader to warm up the caches
for the checker, and also supply it branch hints. This optimization increases the per-
formance of the system as a whole. Note that all of these early approaches including
DIVA were limited to a single core.

Subramanyan et al. [Subramanyan et al. 2010] propose MRE where a single checker
checks multiple leaders. This is possible in scenarios where leaders have a very low
IPC, and the IPC of the checker is high because of the hints that it receives. Hukerikar
et al. [Hukerikar et al. 2014] also propose a similar scheduling heuristic. These two
works propose to partition the set of available cores into two categories: leader cores
and checker cores. As the names suggest, the leader threads run on the leader cores
and the checker threads run on the checker cores. We believe that this is an unneces-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:4 R. Kalayappan et al.

sary restriction, and hence treat all cores alike. These two works are in fact a subset
of the set of schedules that the FluidCheck framework allows.

CRT (chip level redundant threading) [Mukherjee et al. 2002] is the most relevant
to our work. It tries to extend redundant threading to multiple cores. In the original
paper, the authors present a solution for a two core system that is to reliably execute
two applications. The leader of application A is scheduled along with the checker of
application B on core 1. The leader of application B is scheduled along with the checker
of application A on core B. Such a strategy serves to reduce the high occurrence of
structural hazards seen in SRT. To pass data between the cores, the authors propose
dedicated structures to buffer load values and branch outcomes.

2.2. Independent Checking and Partial Coverage

Traditionally, dual-modular and triple-modular redundancy techniques are used with
independent checker units. Since running processors in lockstep is difficult, HP Non-
Stop systems [Bernick et al. 2005] slightly relax the requirement by having synchro-
nization between processors on only I/O operations. In comparison, assisted check-
ing allows for faster checker threads because the checker threads have a significantly
higher IPC due to the passage of hints to it. Since checker threads suffer from a lesser
number of cache misses, and branch mispredictions, they are also more power efficient
with assisted checking as compared to independent checking. Researchers have also
proposed checkers [Vera et al. 2010; Gomaa and Vijaykumar 2005; Kumar and Aggar-
wal 2008] that check only a subset of instructions. Warped-DMR [Jeon and Annavaram
2012] also recommends opportunistic redundancy, but in the realm of GPGPUs. [Wad-
den et al. 2014] further explores redundant multi-threading to improve reliability in
GPU kernels.

The Slipstream [Sundaramoorthy et al. 2000] class of leader-follower architectures
focuses on enhancing performance. A reduced or pruned version of the program forms
the leader, and the checker runs the original program. The leader’s execution is cor-
rected by the checker when the former’s control flow deviates from the correct path.
The checker is assisted by the leader, and is hence able to keep pace with the latter.
This results in a system with a higher performance. Additionally, since a subset of the
instructions are redundantly executed, any transient error affecting these can be de-
tected. DCE_FR [Zhou 2006] is an extension of the Slipstream design that provides full
coverage. Here, those instructions that are skipped (marked invalid, according to the
terminology in [Zhou 2006]) by the leader, are duplicated and executed twice by the
checker. This ensures that all instructions are covered.

The FluidCheck architecture can be used with the various techniques that provide
partial coverage. However, in this paper we choose to focus on a solution providing
complete coverage.

2.3. Novelty and Contributions

None of the works mentioned in Figure 1 are designed for systems with 16 cores and
beyond, where each core is capable of simultaneously running multiple threads. We
tried to extend two of the most popular schemes namely SRT and CRT to scale to 16
cores (see Section 6). The results were however not very promising. As a result there
was a need to design a new method to support redundant threading in large multicore
processors with 16 cores and more. We believe that this has been an open problem up
till now. Our specific contributions are as follows.

(1) We design an architecture that allows leaders and checkers to be scheduled across
different cores in a manycore processor. Our scheme allows dynamic migration of
leader and checker threads across cores. This feature has not been implemented in
prior work notably CRT.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:5

>
-

— SRT — SRT
3.5 — o checking — o checking

19
fraction of cycles
o o o
P
IPC
NN owow s

o
N

o
@
o o r &

T000 2000 3000 4000
epochs

200 400 600 800 1000 1200 1400 1600 1800 0-6~200 400 600 800 1000 1200 1400 1600 1800
epochs epochs

Fig. 2: calculix TPC study Fig. 3: calculix FU hazard study Fig. 4: gcc IPC study

(2) Our novel scheduling algorithms are tailored for dealing with two classes of
threads: leaders and checkers. We show that it is beneficial to treat these classes
differently. We propose novel pairing mechanisms of leaders and checkers belong-
ing to different applications. Since prior work has considered much smaller sys-
tems (< 2 cores), there was previously no necessity to design such scheduling mech-
anisms.

(3) Novel optimizations to reduce traffic between cores and the memory system: selec-
tive forwarding of cache lines, and forwarding filters (LFB and RFB).

(4) While implementing FluidCheck, we were bedeviled by subtle corner cases such as
livelocks, deadlocks, and thrashing due to frequent migrations. Similar issues were
also faced in the design of CRT. Effective reservation-based solutions (inspired by
CRT) are adopted to solve all these problems.

(5) Lastly, we show an exhaustive evaluation for different load configurations with
100+ combinations of benchmarks. We show that FluidCheck, on an average, is
27.47% faster than solutions similar to CRT, and 42.29% faster than traditional
redundant threading mechanisms such as SRT and AR-SMT.

3. MOTIVATION

We motivate our design by considering a small example, where we shall look at two
representative SpecInt benchmarks: gcc and calculix. Further, let us consider a 2 core
system, where each core is an SMT processor.

3.1. Study of Benchmarks: calculix and gcc

Let us now see what happens if we run the leader and checker of calculix on the same
core using the SRT scheme [Reinhardt and Mukherjee 2000]. Figure 2 compares the
instantaneous IPC (IPC averaged over a 100k cycle epoch) for two configurations: no
checking(only leader thread running), and SRT (with one redundant checker thread).
We observe that SRT is 86% slower than the unchecked run.

The main reason for the slowdown in this case is the contention for structures in the
out-of-order pipeline between threads. Many phases of the calculix benchmark display
an IPC, which is more than half of the pipeline width. In this case, we shall have
slowdowns due to contention. As an example, Figure 3 shows the fraction of cycles in
which instructions are ready but are not able to find a free functional unit. We can
see that the number of such structural hazards is much more for the SRT scheme.
Another contributor for the slowdown of SRT is the load-store queue (LSQ). We have
more decode stalls because the LSQ is full. Due to reductions in IPC, there is a lower
chance of a producer store and a consumer load being in the pipeline at the same time.
This reduces the number of store—load forwardings in the LSQ. The last contributor
is the decreased per thread bandwidth to the data cache, and destructive interference
in the memory hierarchy.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

— SRT
— no checking

00

1:6 R. Kalayappan et al.

Now, let us consider the gcc benchmark. Figure 4 shows that the slowdown here is
markedly lesser (37%). gcc inherently is a low IPC benchmark; hence, the number of
structural hazards is much lower. The reason that gec has a low IPC is because it has
a low branch prediction rate. This increases the number of pipeline flushes. When the
pipeline is flushed, there is a window of time, when most of the resources in a pipeline
are fairly empty. This window of time is utilized by the checker thread.

3.2. Overview of the Proposed Scheme

We now use the intuitions gained in the previous section (Section 3) to create a re-
dundant threading architecture that tries to run our two benchmarks namely calculix
and gcc. We observed in the previous section that calculiz is a more demanding (higher
IPC) benchmark as compared to gcc. We can naively combine the checker of gcc with
the leader of calculix, and the leader of gcc with the checker of calculix (similar to
CRT [Mukherjee et al. 2002]). However, this is not necessarily the best combination.
Since gcc has frequent pipeline flushes due to branch mispredictions, there are large
intervals of time when the pipeline is fairly unoccupied by instructions. We can use
these windows of time to execute as many instructions from other threads as possible.
Such a choice will not affect the IPC of the leader thread of gcc. In fact we have ex-
perimentally observed that by running the leader thread of gcc along with the checker
threads of both gcc and calculix on the same core, and leaving the other core free to
exclusively run the leader thread of calculix, turned out to be a faster solution. The
main insight here is that it is not necessary to have any preset formula for distribut-
ing leaders and checker threads across the cores like CRT. Instead, we need to find out
the specific combination that works best for a given set of benchmarks at a particular
point of time.

This reasoning can be extended to a bigger suite of benchmarks. All kinds of com-
binations are possible. For example, it might be the case that running all the leaders
separately and running all the checkers separately is the best mapping. The essential
point of this discussion is that there are a myriad of ways in which threads can be
scheduled to cores, and to maximize performance, our architecture needs to support
all kinds of combinations of leaders and checkers on the cores. Moreover, programs
have phases and the behavior across phases can be distinctly different. As a result,
the most efficient mapping of threads to cores will change over time. It is thus neces-
sary to periodically reschedule the threads (both leaders and checkers). Clearly, there
are other considerations also such as the cost of process migration, bottlenecks in the
NoC, and power consumption. FluidCheck takes these constraints into account and
supports arbitrary combinations of leader and checker threads on cores. Moreover, it
also periodically recomputes the mappings, and migrates threads across cores.

Figure 5 illustrates some interesting scenarios that occur in the course of the sys-
tem’s progress. Four single-threaded programs that need to be reliably executed, are
initially run on a four-core SMT system. Panel (1) indicates a particular valid state
that the system can be in. LI (in the figure) is the leader thread of the first program,
and it is scheduled on core A, and its checker thread is scheduled on core D and is
denoted by C1I. The same notation is used to specify the schedule of the leader and
checker threads of the other programs. As can be seen, the checker thread of a pro-
gram can run on any of the available cores, including the same core as the leader itself
(as in the case of program 4).

Panel (2) describes a scenario where the checker core is unable to keep up with the
leader thread. Assume that core D decides to evict the checker thread, C1. Core D
informs core A about this, which in turn, requests the central arbiter to assign it a
different checker core, as illustrated in panel (3). The arbiter selects the best possible
checker, core C in this example, from among the available cores and replies to core A.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:7

Arbiter

L3 L4

L1 L2 L2

Arbiter]
S
“Core C)
= Core B

L4

SCI By | Sfeme (@)
ca i c4
(1) @) (3)

perlodlc
Arbiter Arbiter Arbiter
L1 [: L2 L1l : 2 L1 L2
L3

\ L4
C Cc2 > m— Cc3 >
37 ol Eg Cl—— ca “Hcorec % .| Core D (éi

Core A

ik

4) (%) (6)

Fig. 5: Illustration of the proposed system

Core A sets up the relevant context at core C, and waits until the checker thread at
core D finishes, before resuming its execution of thread L1 (panel (4)).

The arbiter periodically reconsiders the schedule of threads, as shown in panel (5).
This is done to accommodate phase changes. A new schedule after this shuffling is
shown in panel (6).

4. ARCHITECTURE

/

— = E R EE =
= b R E £
@) e & clSls N B =
muUoeWUE 8 LEGEND
(1) Arbiter
Register — (2) Hint Buffers
File (3) Construct hint
_ and forward
(4) iRFB (5) iLFB

(6) dRFB (7) dLFB
(8) Victim cache

(9) Retirement RF

(10) Reliability specific
circuitry : (i) request
checker assignment

(ii) send context to new
checker

L1 L1
iCache dCache

Fig. 6: Proposed architecture

& ~/

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:8 R. Kalayappan et al.

4.1. Description of Physical Structures

Figure 6 shows the architecture of the entire system. The additional structures re-
quired are colored green and numbered. The key component is a centralized arbiter
that maps the threads to cores. It is connected to the NoC. Each n-way SMT core con-
tains n hint buffers (HB) to store the hints for the checker threads that the core might
be running. We also have a small circuit at the end of the ROB to construct the hint
packets. We have a host of structures iRFB, iLFB, dRFB, dLFB) for forwarding cache
lines from the leader to the checker. Additionally, to maintain register checkpoints, we
have a retirement register file that is written to by the checker thread after success-
ful verification of an instruction. At the L1 data cache, along with additional bits in
each line, we have a victim cache for holding evicted lines with unchecked data (see
Section 4.3.2). The reliability enhancing structures such as the arbiter, and the re-
tirement RF are single points of failure. However, they can be radiation hardened by
using a variety of circuit level techniques, or by using traditional TMR based redun-
dancy techniques. Since they are not on the critical path, their latency is not a major
concern.

4.2. Overview of Redundant Execution

Our model of assisted execution is largely inspired by DIVA [Austin 1999]. Each ROB
entry is tagged with the thread id, and a single bit representing whether it is a leader
or a checker. When a leader thread commits an instruction, the core creates a packet
containing the branch outcome, operand values, and the contents of the instruction.
This packet, tagged with the corresponding checker thread id is sent over the NoC to
the assigned checker, which places it in the appropriate hint buffer. The instruction
then updates the register state of the leader, and leaves the ROB. At this point we
allow leader stores to propagate up to the private L1 cache, but not beyond it. If the
NoC is unable to accept the request due to high traffic, the leader thread stalls.

The core executing the checker thread processes the packets in the hint buffer. For
each hint packet, it extracts the PC, and then fetches the instruction again. After
verifying its contents with the contents field in the hint packet, it proceeds to exe-
cute it, utilizing the received hints to resolve data and branch hazards. At the com-
mit stage, the computation and communication are checked similar to DIVA [Austin
1999]. In specific, we check the result of the instruction, values of the operands (reg-
ister/memory), branch outcome (if the instruction is a branch), and the value to be
stored in memory. If there is any discrepancy, the leader thread is informed, and the
checker helps it roll back to a safe checkpoint. The verification of store instructions,
and the marking of cache lines as non-speculative (verified) at the leader is elaborated
in Section 4.3. We now outline each of the steps in more detail.

4.2.1. Communication between the Leader and the Checker. For creating a checker thread
on a core, the leader sends a sequence of flits to the checker core (see Figure 7). It first
sends a START packet, then a sequence of CONTEXT packets containing a snapshot
of its architectural register file and the starting PC, and finally sends an CONTEXT-
END packet. The checker core then starts to execute the checker thread. During the
execution of the checker thread, if the associated hint buffer fills up, it intimates the
leader core of its inability to keep up by sending a HELP packet. The leader core sends
it a STOP packet and stops sending further hints to it, and waits for the checker thread
to drain its hint buffer. Meanwhile, the leader asks the arbiter for a new checker, and
sets up the context at it through START and CONTEXT messages. The sending of
hints to the new checker is begun only after the old checker completes checking of all
the hints sent to it. If the old checker reports a discrepancy, the new checker is notified
to abort its operation by the leader.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:9

<START><CONTEXT>
to set up context of checker thread

<STOP> to indicate
no more hint packets

<CHECKED> when
all hint packets verified

<CONTEXT> of checkpoint
follows "error" message

Fig. 7: Leader-checker communication

We now describe the core that executes the checker thread. The checker thread’s run
at a core comes to an end because of two reasons. The first reason is that the leader
completed its execution, and the second is that the leader or arbiter decided to reassign
the role of checking to another core. In either case, a checker thread is sent a STOP
message. After this point, the checker thread finishes checking all the instructions in
the hint buffer, and then sends a CHECKED message to the leader. The leader thread
starts the new checker thread (if any) by sending it the CONTEXT-END message.

4.2.2. Maintenance of Register Checkpoints. The checker needs to maintain a consistent
checkpoint for the architectural registers, and the PC. We can either create a radiation
hardened register file [Montesinos et al. 2007] that is associated with minimal perfor-
mance overheads, or we can have a separate radiation hardened retirement register
file that is off the critical path. We prefer the latter option. The retirement RF is only
updated after successful verification against a hint packet. Similarly, a dedicated PC
register can keep track of the last correctly executed PC.

4.3. Checking Memory Instructions

This section describes the memory checkpoint hardware. We do not have any major
contributions in this part of the architecture other than the forwarding filters. We use
standard L1 cache based checkpointing schemes as proposed in [Prvulovic et al. 2002].
We assume that the leader’s L1 cache contains speculative (unverified) data, and the
checker is allowed to update memory state.

There are some standard performance optimizations proposed in prior work. The
leader can forward cache lines to the checker core to increase the IPC of the checker
thread. We forward a line from the leader to the checker upon an L1 cache miss. When
forwarding from the leader core to the checker, we use a forwarding filter to reduce the
number of forwardings.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:10 R. Kalayappan et al.

4.3.1. Forwarding Filters. A core maintains two buffers — recently forwarded buffer
(RFB) and lines to be forwarded buffer (LFB). The entries of both the structures are
tagged with the leader thread id. The RFB contains the block addresses of lines re-
cently forwarded. It follows a least-recently-used (LRU) replacement policy. Whenever
there is an L1 cache miss at a leader thread, the corresponding line address is searched
in the RFB. If found, its timestamp is updated. If not, it is added to the RFB and the
corresponding cache line is placed in the LFB with its ready flag set to false. When
the particular memory operation that caused the L1 miss reaches the commit stage,
and its hint packet is constructed, the ready flag of the corresponding LFB entry is
set to true. A small circuit dequeues ready entries from the LFB and forwards them to
appropriate checker core through the NoC.

The role of the RFB is to remember which lines were recently forwarded and prevent
their re-forwarding, as these lines are, with a high probability, still at the checker. This
minimizes the amount of NoC bandwidth consumed. When a leader thread is assigned
a new checker, the RFB needs to be cleared.

The role of the ready flag is to ensure an as-late-as-possible forwarding to reduce the
frequency of the fairly common occurrence of a forwarded cache line being evicted from
the checker’s L1 cache before the corresponding instruction arrives for execution.

The forwarding filter is required to improve performance, and is not critical to cor-
rectness. If there is an RFB hit, and the line is not found in the checker’s private L1,
the miss is serviced by searching the shared L2.

4.3.2. Memory Checkpointing. Whenever the leader writes to its L1 cache, it marks the
entry as speculative (unverified). In addition to the speculative bit, to support multiple
leaders executing on a core, we tag every cache line with a 2 bit id (since we can have
at the most 4 leaders executing on a cache). We assume bag-of-task applications and
thus zero overlap between the write sets of two leaders.

Note that we do not allow a cache line to be evicted till it is marked non-speculative.
A standard optimization proposed in prior work is to use a victim cache to save specu-
lative lines that have been evicted from the cache. If the victim cache fills up, we force
a leader-checker synchronization (flush operation — explained in the next paragraph).
The checker operates as a normal thread, and does not need to use the victim cache.

We need to periodically mark speculative lines as non-speculative. By default, we
perform a flush operation for every migration of the checker thread (a minimum of
once every epoch). The leader thread flushes its pipeline, asks the checker to stop (by
sending the STOP message), and requests the arbiter for a new checker. It waits for the
CHECKED message from the previous checker. After receiving the message it marks
all its speculative lines in its L1 cache and victim cache (identified by the 2 bit id) as
non-speculative. We can use a gang clear mechanism.

Even if a leader-checker pair are executing on the same core, we do not have an issue
because the checker never accesses speculative data. If there are two copies of a line in
a set (one speculative, and the other non-speculative), the leader always accesses the
speculative copy. The cache controller ensures that the thread gets access to the right
version of data.

4.4. Rollback Mechanism

When a soft error is detected by the checker, the contents of its radiation hardened
retirement register file form the checkpoint to rollback to. The checker flushes its
pipeline and sends the leader an ERROR message. This is followed by the register
checkpoint (CONTEXT message). The leader on receiving the ERROR message flushes
its pipeline, sets up its context based on the received checkpoint, and begins execution
from that point. We can avoid errors in the NoC while transferring checkpoints by

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:11

adding extra CRC bits to the message. These messages are not on the critical path
since errors are very rare.

Regarding memory checkpointing, the stores committed by the leader core only prop-
agate as far as the private L1 cache. When the checker core verifies the store, the leader
is allowed to write the store to lower levels of the memory. Therefore, in the event of a
soft error, the leader core can recover by simply purging all unverified lines.

4.5. Resolving Livelock Issues

We can unfortunately have some livelock situations in our architecture.

Let us consider a case where we have a leader of thread A, and a checker of thread
B executing on the same core. Assume that the checker thread faces a decode stall
because it can not get a free entry in the ROB or LSQ. In this case, it needs to wait
for some ROB or LSQ entries to get freed. The leader of thread A might be waiting for
some data from memory and it might take 100s of cycles for the checker to start again.
Meanwhile, it is possible that the hint buffers of the checker fill up, and its leader
(thread B) blocks. To avoid a potential deadlock situation, we force the leader (thread
B) to flush all its instructions from the pipeline, and request the arbiter to reassign it
a new checker.

Now, it is possible that in the new core, the checker of thread B faces decode stalls
again, requiring yet another migration. In this manner it is possible to have a lot of mi-
grations in a small window of time. We have observed this scenario in our simulations
very frequently.

To avoid such livelock issues, we guarantee some progress to each checker thread.
A leader instruction is allowed an entry in one of the pipeline structures such as the
re-order buffer, load-store queue or instruction window, only if the occupancy of the
structure is less than a certain fixed fraction (say 0.95, as used in all simulations). This
guarantees a small window for any checker threads on the core to progress. In practice,
this eliminates most of our livelocks, and we do not have repeated migrations.

4.6. Effect of FluidCheck on the Operating System

The hardware reveals to the OS a set of virtual cores. The OS, which only deals with
leader threads, schedules them on the virtual cores. A hardware scheduler, in consul-
tation with the arbiter logic, then schedules the leader threads and checker threads on
the different physical cores.

All system calls and asynchronous interrupts are executed by both the leader and
checker threads. When the leader decodes an I/O instruction, it creates a data packet
that contains the details of the I/O operation. The leader sends the I/O data packet to
the checker. Simultaneously, the leader sends a hash of the I/O data packet to a ded-
icated module in the I/O system such as the Southbridge chip on Intel motherboards.
The checker checks the consistency of the I/O data packet (note that the checker has
verified all instructions up to the I/O operation at this point) and then forwards it to
the I/O system. The dedicated I/O module computes a hash of the I/O packet, compares
it with the hash that it has received from the leader, and if both of them match, sched-
ules the I/O operation. Obtaining the results of a system call is not very complicated.
Most operating systems write the results of system calls to dedicated regions in the
process’ memory. After returning from a system call the leader reads the results using
regular memory reads. The checker does the same, when it is checking the instruction.

When an asynchronous interrupt arrives, it is sent to both the leader and the
checker. The leader flushes all of its buffers, sends an INTERRUPT packet to the
checker, and waits for the checker to verify all the outstanding instructions. Once the
checker successfully verifies all instructions up to the INTERRUPT packet, it sends
a CHECKED message back to the leader, and configures itself to expect hints corre-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:12 R. Kalayappan et al.

sponding to the interrupt handler. The leader, on receiving the CHECKED message,
jumps to the interrupt handler. Once the interrupt handler has been executed, the
transition back to the application context is done by both the leader and the checker
threads without any explicit communication.

5. ARBITER LOGIC

The arbiter is invoked whenever we wish to map threads (leader/checker) to a subset of
the available cores. It can either be invoked when it is necessary to migrate a blocked
checker thread or periodically at epoch boundaries. In any case, the mechanism for
mapping threads is the same. We first describe the method to map a single thread to
an SMT core that is available. An n-way SMT core is said to be available when less
than n threads are currently running on it.

5.1. Mapping a Single Thread

The first step is to define a metric that captures the activity of a thread or a core.
We define activity in two ways. We first define activity as the average IPC of a thread
from the start of an epoch. In the case of a core, we define this metric as the sum of
the average IPC (in the last epoch) of all the threads running on it (measured from
the start of the current epoch). However, using IPC as a measure of activity is not the
best solution. We thus defined a metric called weighted IPC (WIPC) that is defined as
follows. It is equal to the IPC, when the thread is a leader, and it is equal to x x IPC,
when the thread is a checker. In this case, is a parameter called checker importance.
We shall vary it in our experiments, and find the best configuration. For a core, we
define WIPC(x) as the sum of the weighted IPCs of all the threads (leader or checker)
running on the core.

To map a single thread to an available SMT core, we rank all the cores in ascending
order of activity (using the IPC or WIPC metric). Subsequently, we choose the first core
that has free SMT slots available and map the thread to that core.

When IPC is used as the metric to measure activity, the arbiter type is termed
minIPC. When WIPC is used, the arbiter type is termed minWIPC x, where z is the
checker importance. The two metrics require a per-thread instruction counter at each
core. The values of the counters are communicated to the arbiter at the end of each
epoch.

5.2. Mapping a Set of Threads

We need to periodically remap all the threads at the end of every epoch. We consider
three scheduling policies. The first scheduling policy is called Pinned Leaders (SP-
PL). Here, for the leader threads, a statically determined random mapping of threads
to cores is followed. Regarding the checker threads, in every epoch, we sort them in
descending order of activity and map each thread according to the scheme mentioned
in Section 5.1. Note that the mapping of leaders to cores is fixed, and it cannot change
dynamically over time. The intuition was to have an equitable distribution of leader
computation across cores, in terms of number of threads. The checker threads are then
distributed every epoch in an attempt to achieve an equitable distribution in terms of
core activity.

The second scheduling policy is called Unpinned Leaders (SP-UL). There is no static
mapping for any of the threads. Every epoch, we sort all the threads in descending
order of activity, and then map the threads to cores (according to the scheme described
in Section 5.1). Here, the intuition is to distribute threads in such a manner that all
cores display a similar activity. It is important to note that here we do not differentiate
between leader and checker threads. The focus is on achieving a distribution wherein

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:13

a similar activity (be it in terms of leader or checker instructions) is observed at each
core.

The last scheduling policy, Unpinned - All Leaders First (SP-UALF), is the most
powerful. It allows full flexibility like in SP-UL, but gives additional importance to
leaders. This is desirable as leaders are more demanding of resources (argued further
in Section 6.1.2). Every epoch, we first sort all the leader threads in descending order
of activity, and then map them to cores (as described in Section 5.1). We then do the
same with all the checker threads. This way the leaders are given the first shot at
appropriating resources for themselves, and the checkers are then distributed across
the cores in an equitable fashion (in terms of core activity).

5.3. Thread Migration and NoC Issues

We evaluated many schemes that additionally take thread migration and NoC locality
into account. However, they were not found to yield statistically significant improve-
ments given the additional complexity in implementation. The reason is as follows. We
assume a 2D torus topology. This gives an average leader-checker distance of 2 hops,
for a 16 core system. Thus, leaders and checkers are typically quite close to each other.
The different hint streams do not affect each other significantly as the time spent by
them in the network is quite short. Secondly, the forwarding filters reduces the num-
ber of flits sent. Thirdly, all our three heuristics (SP-PL, SP-UL, SP-UAFL) rely on
the activity of phases. The activity does not change significantly across most phase
boundaries, and thus thread migrations are relatively rare (it was observed that on an
average, a thread migrates once every 383 million cycles). Consequently, the network
traffic is not jittery and the different streams have minimal effect on each other. We
shall discuss the actual NoC traffic numbers, and stalls due to the NoC in Section 6.4.4.

5.4. Fetch Policies

SMT processors are typically very flexible in the issue, commit, and dispatch stages,
and apportion the slots dynamically between the threads. However, their fetch units
are typically very traditional and fetch from the different threads in a round robin or-
der [Tullsen et al. 1995]. We extend the scheme Full Simultaneous Issue (proposed in
[Tullsen et al. 1995]) in FluidCheck. Our aim is to give more fetch slots to high per-
forming threads. The proposed scheme is as follows. We consider a block of 16 fetch
cycles in an SMT core. Next, we apportion the 16 fetch cycles among the threads pro-
portional to their activity. If the activities of n threads are A; ... A,,, then the number
of fetch slots that the i"" thread gets is A;/ (>_,_, Ax) x 16. We alternately round the
fetch slots using the floor and ceiling functions such that the total fetch slots across
the n threads add up to 16. This scheme is similar to the proposals in [Tullsen et al.
1996].

6. EVALUATION

The proposed checker architecture was evaluated using the cycle accurate architec-
tural simulator Tejas [Sarangi et al. 2015; Malhotra et al. 2014]. The NoC has been
modeled in detail, and has been included in the energy estimations. For modeling
power, we use McPat [Li et al. 2009], and Orion 2 [Kahng et al. 2009]. For esti-
mating the delay and power of FluidCheck structures, we use the models in Cacti
5.3 [Thoziyoor et al. 2008]. We scale the results to 22nm by using the methods sug-
gested in [Huang et al. 2011]. All our simulation tools have been rigorously validated
with native hardware (see the original publications).

Our simulated system consists of 16 cores. Each core is a 4-way SMT (the implemen-
tation of SMT is as explained in Section 5.4). The simulation parameters were derived
from the designs of Intel Sandybridge, and IBM Power7 (see Table I). Each core has

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:14 R. Kalayappan et al.

Parameter Value Parameter Value
Cores 16 Technology 22 nm
Frequency 3.6 GHz
Pipeline
Retire Width 4 Integer RF (phy) 160
Issue Width 6 Float RF (phy) 160
ROB size 168 Predictor Tournament (PAG-PAP)
IW size 54 Bmispred penalty 14 cycles
LSQ size 64 Multi-threading 4-way
iTLB 128 entry dTLB 128 entry
Integer ALU 4 units Int ALU latency 1 cycles
Integer Mul 1 unit Int Mul latency 2 cycles
Integer Div 1 unit Int Div latency 4 cycles
Float ALU 2 units FP ALU latency 2 cycles
Float Mul 1 unit FP Mul latency 4 cycles
Float Div 1 unit FP Div latency 8 cycles
L1 i-cache, d-cache
Write-mode Write-back Block size 64
Associativity 8 Size 32 KB
Latency 3 cycles
Shared L2
Write-mode Write-back Block size 64
Associativity 8 Size 12 MB
Latency 45 cycles
\ Main Memory Latency \
| Technology | DDR3 || Latency [200 cycles \
NoC and Traffic
Topology 2-D Torus Routing Alg. dynamic X-Y routing
Flit size 32 bytes Hop-latency 2 cycles
Hint size 16 bytes Cache line size 64 bytes
Aucxiliary structures size (number of entries)
Hint Buffer 512 Victim Cache 32
RFB ‘ 64 H LFB 64

Table I: Simulation parameters

a fetch width of 4, issue width of 6, has a 32 KB i-cache and d-cache. We additionally,
have a 12 MB L2 cache, and a 2D torus based NoC.

We evaluate three classes of workloads: low, medium and high. Low refers to a con-
figuration where we simulate 16 applications (16 leaders + 16 checkers). Similarly,
medium refers to 24 applications (total: 48 threads), and high refers to running 32
applications (total: 64 threads). For each run we randomly choose a set of benchmarks
from the SPEC CPUZ2006 suite, and additionally run each configuration for 100 times.
We report the geometric mean values.

For each application we use “Pinpoints” [Patil et al. 2004] to find the representa-
tive portions of the SPEC CPU2006 benchmarks. On an average, a benchmark’s trace
consisted of 335 million instructions, duly weighted as prescribed by Pinpoints. Note
that Pinpoints finds those regions of a benchmark that are representative of the en-
tire program. Instead of simulating hundreds of billions of instructions (which is not
feasible), we just need to run the code sections identified by PinPoints. The authors of
Pinpoints [Patil et al. 2004] have validated the toolset against real hardware (Itanium
2 processor). They have shown the error to be less than 8% for integer benchmarks
and less than 3% for floating point benchmarks from the SPEC CPU2006 suite. Using
Pinpoints or its sister software SimPoints is a standard approach.

Additionally, we explore the effect of spare cores. We simulate workloads having 15
and 14 benchmarks, resulting in 1 and 2 spare cores respectively (Figure 17). Presence
of spare cores results in a significant drop in the penalty on performance.

The comparison of the various schemes is done on the basis of the slowdown in the
simulated execution time as compared to the case of unreliable execution (no checker
threads). Mathematically, the slowdown experienced by a workload W is given by:

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:15

100 Low Load 10 Medium Load
SRT B8 minlPC B8 minWIPC_0.65 =53 minWIPC_x SRT B8 miniPC B8 minWIPC_0.65 =53 minWIPC_x
CRT CRT
—~ 80 —~ 80
x X
s s
2 60 3 60
E E
K= o § %
; 2 w0\ A
g & | A\
5 5 N
N N
\ A\
0 I§ é§
o
doddaaa doddcaa asddsaa doddaaa dsdacaa a3d3s3s
W i nuwnunnnn W nwnwnnn nuwnwnnn
LLLELLL LLLNLLL 1pLLnny LLLRLLL peLpnny A
SP-PL SP-UL SP-UALF SP-PL SP-UL SP-UALF
Fig. 8: Mean slowdown - low load Fig. 9: Mean slowdown - medium load

H cycles taken to reliably execute b

slowdown =11y et cycles taken to unreliably execute b

We set the epoch size to 100k cycles. We compare our proposals against seminal
works in the area — AR-SMT [Rotenberg 1999]/SRT [Reinhardt and Mukherjee 2000]
and CRT [Mukherjee et al. 2002]. These works are implemented diligently in our
many-core framework. In AR-SMT/SRT, a leader-checker thread pair is scheduled on
the same core. In CRT, the checker thread is scheduled on a partner core (adjoining
core on the NoC). For both SRT and CRT, hints are forwarded to the hint buffer at the
checker core (via the network-on-chip for CRT). Cache line forwarding, as explained in
Section 4.3.1, is enabled as well for both the schemes.

6.1. Performance Evaluation

10 High Load

SRT EEE minlPC =~ EE® minWIPC_0.65 E==8 minWIPC_x
CRT

®
=]

o
=}

N
<)

mean slowdown (%)

N
o

A NMNNNNNNNN NN NN NN
W77 70 77 7 72

A T TS
V7727777777 720777777777

N
\
\
\
\
N
\
N
\
\
N

N AN

o
S

coocoooco cooocooo coocoooo
Wannnnn TR Wannnnn
X X X X X X X X X X X X X X XX X X X X X
SP-PL SP-UL SP-UALF

Fig. 10: Mean slowdown - high load

Figures 8,9 and 10 compare the mean slowdown of FluidCheck against AR-SMT/SRT
and CRT, under low load, medium load and high load conditions respectively. We eval-
uated our three scheduling policies: Pinned Leaders (SP-PL), Unpinned Leaders (SP-
UL) and Unpinned — All Leaders First (SP-UALF). Since each experiment is run for a

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:16 R. Kalayappan et al.

100 times, we show error bars that indicate the minimum and maximum values of the
measured metric. The total deviation from the mean is in the range of 1-7%.

The general trend is that SRT suffers from significant performance penalties, as
high as 80% for high workloads. CRT achieves a lesser slowdown as compared to SRT,
and FluidCheck vastly outperforms both SRT and CRT - experiments revealed up to
65.3% improvement over SRT and up to 52.8% over CRT. We will now discuss the
improvement obtained under different load conditions and with different scheduling
policies.

6.1.1. Load Analysis. Under low load conditions, the checker threads find greater room
to move in an unintrusive fashion. This is highly favorable to FluidCheck, providing
it with ample flexibility to move threads around to make best use of the resources.
These factors result in a minimal slowdown. The proposed techniques provide reliable
execution with a mere 18% penalty on performance on average (under SP-UALF). In
comparison, SRT and CRT are far more expensive — SRT shows a mean slowdown of
46.4% and CRT shows a mean slowdown of 34.76%.

As the load increases, we see the penalties becoming more pronounced. The intro-
duction of checker threads now results in a greater competition for resources. Under
medium loads, FluidCheck shows a slowdown of 27.51% on average (under SP-UALF)
—42.29% faster than SRT, and 27.47% faster than CRT. Under high loads, FluidCheck
shows a slowdown of 36.2% (under SP-UALF) — 47.23% faster than SRT, and 40.2%
faster than CRT.

6.1.2. Scheduling Policy Analysis. We observe that the SP-PL policy displays the largest
performance penalty. This is expected as the policy is quite simple in the scheduling of
leader threads to cores. Since it simply follows a statically determined mapping, it is
relatively powerless as compared to the other two policies. FluidCheck, with the SP-PL
policy displayed slowdowns of 19.53%, 40.6% and 50% for low, medium and high loads
respectively.

Among the other two, we note that the slowdowns are significantly lower when
adopting the SP-UALF policy as compared to the SP-UL policy. In other words,
scheduling all leader threads before the checker ones proves beneficial. The reason
for this is that checker threads are high performing — for the same sequence of in-
structions, a checker thread places a lower demand on resources. Thus, giving more
importance to the more demanding leaders by scheduling them first displays signifi-
cant gains.

FluidCheck, with the SP-UL policy displayed slowdowns of 20.22%, 33.55% and
49.8% for low, medium and high loads respectively. The corresponding slowdowns with
the SP-UALF policy were significantly lower — 18%, 27.51% and 36.2% respectively.

All further discussions in this section are based on experiments employing the SP-
UALF policy.

6.1.3. Varying Checker Importance in minWIPC x. As discussed earlier, giving leader
threads more importance is beneficial. We study the variation in the slowdown ob-
served when the checker importance is varied. Figures 8, 9 and 10 show the effect
of varying the importance (z) in the minWIPC schemes. Gains of up to 22% were ob-
tained through prudent selection of the checker importance. A checker importance
value of 0.65 was found to perform consistently well across different load conditions
and scheduling policies. We shall henceforth use 0.65 as the default checker impor-
tance for the minW1IPC configuration.

6.1.4. Comparison with Standard Thread Scheduling Algorithms. We compare FluidCheck’s
scheduling schemes with several seminal proposals — Data Cache Conflict Scheduling
(DCCS) [Settle et al. 2004], IPC-based Scheduling (IPCS) [Parekh et al. 20001, Ready

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:17

B DCCS =l TCA EE® minlIPC
IPCS L1 BW-aware [E=58 minWIPC_0.65

B RIRS

mean slow

V7272272
V7222222

=F

Low Load

Fig. 11: Per-benchmark slowdown

2.933¢
W leader thread
Thread 4 BER checker thread
) vacan! t
0.231.
Thread 3|

HZ 933t
Thread 2} 0.231¢

Thread 1

§88
§8838

(a) low load (b) medium load

Fig. 12: Thread mapping snapshot (minIPC, SP-UALF)

Inflight Ratio Scheduling (RIRS) [El-Moursy et al. 2006], Thread to Core Assignment
(TCA) [Acosta et al. 2009] and LI bandwidth aware allocation [Feliu et al. 2013]. The
results are shown in Figure 11. It must be noted that the TCA algorithm is geared
towards a system where the number of threads to be run is equal to the number of
hardware threads, that is, the high load scenario. Consequently, it shows poor perfor-
mance in the low and medium load scenarios.

The slowdown achieved by the best of these schemes, RIRS, is 104% greater than
that achieved by FluidCheck (in the medium load scenario). FluidCheck vastly out-
performs these schemes (57.45% (low load) and 40.5% (high load) faster than RIRS)
as they suffer from the critical drawback of not differentiating between leader and
checker threads.

6.2. Deeper Insights

6.2.1. Balanced Load Distribution. An equitable distribution of the load across cores max-
imizes throughput. The heuristics minIPC and min WIPC aim to achieve this equitable
distribution. Figure 12(a),(b) and (c) show snapshots taken during different Fluid-
Check (minIPC) runs. Each column in the grid corresponds to a core, and each cell
in a column represents an SMT thread. Now, the color of the cell indicates the kind
of thread: blue (with the circles pattern) for leaders, red (with the crosses pattern) for
checkers. The intensity of the color is proportional to the IPC of the corresponding
thread. The figures show that if the intensity is summed up over the columns, then
the 16 sums are roughly equal. Figure 13(a),(b) and (c) show snapshots taken during
different CRT runs. The snapshots were taken when the constituent benchmarks were
in the same phases as when the minIPC snapshots were taken. The standard devi-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

Thread 4|

W leader thread
B checker thread
) vacant

1.428¢
Uu 267¢

R. Kalayappan et al.

W eader thread
BER checker thread
) vacant

2.051¢
Uu 218¢

Thread 3|

1.428¢
Ho 267¢
Thread 2)

Thread

8 8 5
(a) low load (c) high load
Fig. 13: Thread mapping snapshot (CRT, SP-UALF)
unchecked | SRT [CRT | minIPC unchecked [SRT | CRT | minIPC unchecked | SRT | CRT [minIPC
Workload : Low Workload : Medium Workload : High
Branch Mispred./instruction 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.011 0.009 0.011
LSQ full ~0 0.011 0.023 0.013 ~0 0.016 0.023 0.019 ~0 0.013 0.019 0.018
IW full 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001
ROB full ~0 0.009 0.010 0.005 ~0 0.007 0.009 0.008 ~0 0.004 0.007 0.008
NoC busy ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0
leader data hazard* 1 0.882 0.528 0.459 0241 [0.724 0.419 0.340 0245 || 0.682 0.345 0.297 0.246
leader structural hazard** || 0.024 0.019 0.008 0010 [0.032 0.025 0.010 0.013 | 0.026 0.020 0.008 0.010
iCache hit rate leaders 0.996 0.996 0.995 0.996 0.994 0.991 0.988 0.989 0.987 0.984 0.979 0.984
checkers 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
dCache hit rate leaders 0.838 0.820 0.830 0.828 0.832 0.793 0.816 0.812 0.822 0.786 0.797 0.796
checkers 0.980 0.990 0.992 0.965 0.979 0.980 0.962 0.971 0.975
The units of all the stall/hazard statistics are: average stalls/hazards per leader instruction (varies from 0 to 1).
* leader data hazard: cycles when no instruction was issued, and the functional unit has a leader instruction with operands not ready
** Jeader structural hazard: cycles when no instruction was issued, and the functional unit has a leader instruction with operands ready but has no FU to execute on

Table II: Stall statistics and cache hit rates

ation of the cumulative IPCs on each core is 0.55 in this case for the medium load
scenario. This is much greater than a similar figure for FluidCheck, which is 0.31. The
low standard deviation in FluidCheck is indicative of the fact that the execution load
is equally distributed among the cores, which is essentially the crux of the idea behind
FluidCheck. Since FluidCheck is better in load balancing, we see a reduced pressure
for resources in cores, and this leads to a higher aggregate performance.

[[SP-PL [SP-UL | SP-UALF
minlIPC - Workload : Medium

BMispred/inst. 0.010 0.010 0.010
LSQ full 0.028 0.010 0.019
IW full 0.002 0.002 0.002
ROB full 0.002 0.004 0.008

NoC busy ~0 ~0 ~0
leader data hazard 0.372 0.330 0.245
leader structural hazard 0.034 [0.014 0.013

* see Table II for definitions of the metrics

Table III: Stall statistics — across different scheduling policies

6.2.2. Explanation of the Trends. In this section, we will try to explain the reason for
the better performance of FluidCheck. Table II shows the frequency of occurrence of
different events in the pipeline that can lead to idle cycles, and the hit rates in the
L1 caches. For the pipeline, we look at the branch misprediction rate per program
instruction, and the number of cycles (divided by the number of instructions) that
different structures in the pipeline (LSQ, instruction window (IW), ROB, and NoC
buffers) are full and cannot accept new instructions. Additionally, we also look at data
and structural hazards for leader threads. Data (structural) hazards are quantified by
the number of cycles (divided by the number of instructions) that leader instructions
are not issued because of the unavailability of operands (FUs).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:19

High Load
300 7 EEE—
7 ez SRT

B minlPC

N
wu
o

N
o
o

=
i

slowdown(%)

o 9 8 &
]
o
oot
=
[
N

perlbench g%
[
b=
WSSSSS
=

ADM| PEpSSSSSSSSNIITTINN
Ibm B

B
b=
B
b
B
SSS
B

S OXNUOX O-0 = vAWN SMELEQOU XX = X e %00
2O=0 o mYQ EE-E‘g mxggo_cuzwsggmﬂgcm
EZ2f casnPEGSONS SESGLPZanges 09
LECoLm £gl8Locy 3 wlw LoofgcdwownE
2®o " a £EL2 v @5 a6 o © 0 203 N
2ug GE 328 @ _cg o G2 <
c ¥ o © [CRe}
x O = v X =

benchmarks

Fig. 14: Per-benchmark slowdown

Other than the data and structural hazards suffered by the leader threads, all the
other numbers are roughly comparable across the four configurations: unchecked, SRT,
CRT, and FluidCheck(minIPC). We believe that the differences in speedup is primarily
because of the lower rate of hazards and resultant higher IPCs of leader threads in
FluidCheck. For example, for the Medium workload, the average leader data hazard
rate was found to be 0.245 in the case of minIPC. This is quite low compared to those
of CRT and SRT, which displayed data hazard rates of 0.34 and 0.419 respectively.
In other words, the probability that a leader thread of SRT could not find an instruc-
tion to execute is almost twice that of FluidCheck. By means of a more balanced load
across cores, FluidCheck ensures a higher flow of instructions through the instruction
windows of all the cores. Consequently, the select logic in each has a larger pool of
instructions to work with, reducing the probability of no instructions being issued.

Additionally, SRT displays a high structural hazard (not finding enough functional
units) rate, as it places both the leader and checker threads of an application on the
same core. Since their resource requirements are similar, they place a greater demand
on the same resources. For example, for the Medium workload, minIPC reports a struc-
tural hazard rate of 0.013, while SRT reports a rate of 0.025.

To summarize, the main reason for the high performance displayed by FluidCheck
is that our heuristics try to equitably balance the load across cores. As a result the
SMT cores can fairly allocate issue slots and ensure good execution throughputs for
the instructions of all the threads. A different view to the observations can be obtained
in Figure 14. This illustrates the slowdown suffered by each benchmark with a high
load, under the SRT and FluidCheck schemes. The slowdowns are markedly lower
in FluidCheck as the threads have been so scheduled so as to balance the use of the
resources, and consequently maximize the throughput of the system.

The different scheduling policies are compared in Table III. Here as well, we see
that the main difference in the schemes is the number of leader data hazards. For the
Medium workload, SP-UALF has the lowest rate of data hazards, and also has the best
performance (see Figure 9).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:20 R. Kalayappan et al.

w

Unchecked
SRT

B3 normalized energy consumption
slowdown

~
in

=
S

owdown (%)

o|E=3 CRT
EEE minlPC

N
o

@
S

3
sl
power (W)

=
S
mean

normalized energy consumption
°
&

°
o

S

g
&
S
component

Fig. 15: Energy consumption Fig. 16: Power consumption

6.2.3. Thread Migrations. We observe that in our schemes, on an average a thread mi-
grates once every 383 million cycles. This can be attributed to the fact that workloads
typically have long phases of unchanging behavior. Consequently, arbitration at suc-
cessive epochs typically results in the same mapping being repeated. This has two
implications: (1) the NoC traffic is not jittery, allowing the system to settle on stable
and balanced routing paths, and (2) expensive TLB flushes (which are required when
a thread migrates) are minimized.

6.2.4. Common Mode Failures. Suppose FluidCheck reports a false negative (masks an
error) due to a common mode failure. Note that false-positives are not an issue (only
performance penalty). A false-negative is possible if there is a failure in the error re-
porting circuitry. Since this circuitry is off the critical path, we assume that it is made
of radiation hardened transistors, which are slow yet very reliable. This is a standard
assumption in this field. It is also possible that both the leader and checker instruc-
tions get corrupted in exactly the same way. If the leader and checker threads are
running on different cores, the probability of this is infinitesimally small. If the two
threads are mapped to the same core, a lag of around 50-150 cycles is ensured between
them. It is very unlikely that a single (or very rarely multiple) ephemeral particle
strike will cause two instructions a hundred cycles apart to get corrupted in exactly
the same way. However, if this is a concern, then we can run the leader and checker
threads of each application on different cores (performance penalty of <0.1% as com-
pared to the numbers shown in Section 6.1).

6.3. Energy Consumption

In this section, we evaluate the power and energy overheads of our scheme with re-
spect to the baseline, Unchecked, which does not have any redundancy. The checker
threads contribute to an increase in energy. However, the overhead is not 100%. This
is because a checker thread is more energy efficient than the leader — it does not use
the branch predictor, structures for load latency speculation, and the wakeup-select
logic. However, additional energy is consumed in the functional units, NoC for forward-
ing hints and the L1 caches. The additional structures required to facilitate assisted
re-execution and error detection also pose an overhead.

Figure 15 shows the normalized energy consumption and slowdown as compared
to the baseline (medium workload). We also compare with an idealized DMR scheme
where we assume that no energy is consumed in communicating and comparing re-
sults. We observe that the energy consumption of DMR is quite high (100%) as com-
pared to the assisted schemes CRT, SRT, and FluidCheck. The assisted schemes were
found to be comparable — with an average energy overhead of roughly 81-91%, with
FluidCheck at 91%.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:21

& minlPC EEER MinWIPC_0.65
minIPC + 1 extra core =] minWIPC_0.65 + 1 extra core

Es=d minIPC + 2 extra core minWIPC_0.65 + 2 extra core

~
=3

-

g
c
3
o

°
3

o
@
c
©
L}
£

fourteen fiteen
workloads

Fig. 17: Effect of spare cores

Figure 16 shows a breakup of the power consumption across different components.
DMR is clearly the most inefficient primarily because it does not use hints and uses
full re-execution. In comparison FluidCheck is 10.74% more power efficient. The power
consumptions of SRT, CRT, and FluidCheck (minIPC) are comparable: between 103 to
118 Watts. The main contributors to the power overhead are the register files, ALUs,
and the instruction window. The NoC power is roughly 10.7W (out of 118W) and is
thus not a dominant component of the power consumption. This is primarily because
the size of our network is relatively small: 4 x 4 torus, and since the traffic patterns
do not change for a long time (see Section 6.2.3), our routing paths stabilize in a way
that contention is minimized. Additionally, the forwarding filters reduce the amount
of traffic in the NoC. The additional structures in FluidCheck to provide reliability
(hint buffers, forwarding filters, radiation hardened register files, victim caches and
the arbiter) consume a modest 5.27W.

We observed similar trends for the other low and high workloads. DMR proves to
be the most expensive. The three assisted checking methods perform comparably, with
FluidCheck being marginally higher due to the increased NoC usage. The average
energy overheads of FluidCheck with low and high workloads were found to be 84.7%
and 93% respectively.

6.4. Sensitivity Studies

6.4.1. Effect of Spare Cores. In this section, we study the effect of having some cores
free such that they can be used to schedule highly demanding leaders or checkers.
FluidCheck can seamlessly integrate such free cores. Figure 17 shows two configura-
tions when we have fourteen and fifteen applications respectively. Like all our previous
experiments, we compare the performance to a baseline design that does not have re-
dundant threads.

The extra cores significantly improve performance, allowing us to achieve total
coverage with a slowdown as low as 12%. When workloads consisting of 14 SPEC
CPU2006 benchmarks each were employed, two spare cores are available. Using them
both, the minIPC heuristic saw a 28.6% improvement, while the min WIPC heuristic
saw a 33% improvement. When workloads consisting of 15 SPEC CPU2006 bench-
marks each were employed, one spare core is available. The minIPC heuristic saw a
16.9% improvement, while the min WIPC heuristic saw a 17.6% improvement.

6.4.2. Performance of Cache Forwarding. Table II shows the hit rates observed at the
L1 level in the different schemes. We see that there is a small drop in the leader d-
cache hit rates under FluidCheck as compared to unchecked execution (1.2%, 2.4%
and 3.2% under low, medium and high loads respectively). This is due to the additional
checker threads evicting leader lines from the cache. We see that the cache forwarding

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:22

R. Kalayappan et al.

minIPC | minWIPC_0.65 minIPC | minWIPC.0.65 minIPC | minWIPC_0.65

Workload : Low Workload : Medium Workload : High

iLFB Mean 0.209 0.223 0.482 0.487 0.583 0.534
Max 64 64 64 64 64 64

JdLFB Mean 20.806 22.298 25.954 26.516 27.882 24.690
Max 64 64 64 64 64 64
Vietim Cache Mean 0.292 0.002 0.170 0.111 ~0 ~0
Max 32 32 32 32 13 20

Table IV: Occupancy of Auxiliary Structures

minlPC | minWIPC_0.65 minIPC | minWIPC_0.65 minlPC | minWIPC_.0.65
Workload : Low Workload : Medium Workload : High
Mean Bandwidth usage (bytes/core/cycle) 17.304 17.134 18.305 18.105 18.874 18.533
Mean leader-checker distance (hops) 2.503 2.44 2.219 2.108 2.224 2.05
Mean d-cache forwardings (per memory inst) 0.164 0.162 0.124 0.122 0.094 0.094
Mean i-cache forwardings (per instruction) 0.018 0.018 0.018 0.018 0.012 0.012

Table V: Communication Statistics

CRT
BN minlPC

=3 minIPC without cache forwarding

-}
=}

w
=)

mean slowdown (%)
N w B
o o o

=

0

Low Load

Medium Load High Load

Fig. 18: Benefit due to cache forwarding

mechanism enables the checker threads to enjoy a high hit-rate (> 97%). Note that
cache forwarding was enabled for SRT and CRT as well, to make the comparison fair.

To further emphasize the importance of cache forwarding, we studied the effect of
disabling it. We consider three configurations in Figure 18: CRT (with forwarding),
minIPC (with forwarding), and minIPC (without forwarding). First, we can conclude
from the figure that even without forwarding minIPC has lower slowdowns that CRT
with forwarding (for all three types of loads). It has roughly 13.4-41% lower slow-
down. We get some amount of additional improvement when we turn on forwarding
for minIPC. In this case, the slowdowns reduce by 12.3%, 16.3%, and 25.7% for the
low, medium, and high configurations respectively.

For every leader memory instruction, an average of 0.12 lines are forwarded from the
leader’s d-cache (medium load), and an average of 0.02 lines per leader instruction are
forwarded from the i-cache (see Table V). We do not need to forward frequently because
the RFB helps in detecting the temporal locality in accesses. The reduction in forward-
ing helps conserve NoC bandwidth, reduce congestion and performance degradation
(see Tables IT and V). The average occupancies of the LFBs is quite low (see Table IV),
indicative of a low pressure on the NoC. The mechanism is also robust to the problem
of forwarding being too early, which was discussed in Section 4.3.1.

6.4.3. Performance of the Victim Cache. The speculative L1 cache requires a victim cache.
If the victim cache fills up, then we need to force a flush operation (see Section 4.3.2).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:23

@ minlPC mMinWIPC_0. 65‘ @ minlPC minWIPC_O.GS‘

N

mean slowdown (%)
mean slowdown (%)

V77777

NN

nnnnnn
eeeeee
::::::

Low Load Medium Load High Load Low Load Medium Load High Load

Fig. 19: Varying hop latency Fig. 20: Varying NoC topology

This is detrimental to performance. However, this scenario is not very frequent as
indicated in Table IV. Although the occupancy of the victim cache reaches its maximum
limit of 32 occasionally, the frequency is rare. The average occupancy was < 1 in all
our experiments. For larger workloads, we see the frequency dropping even further
— this is because the leaders are slower owing to the high competition for resources.
As a result, the chance of the leader(s) on a core filling up the victim cache within an
epoch reduces. We can thus conclude that the performance penalty due to the victim
cache filling up is negligible, and is greatly outweighed by the gain achieved due to it
by allowing a speculative L1 cache at the leader.

6.4.4. NoC and Performance. Experiments were performed where the leader-checker
proximity was factored into the arbiter heuristics. These, however, did not offer sig-
nificant gains as far as performance was concerned. We thus did not find the NoC to be
a bottleneck in our experiments. Being a 2-D torus structure, the distance between the
leader and checker is around 2 hops on an average. Due to spending lesser time in the
network, the packets encounter negligible congestion. Bandwidth utilization statistics
are provided in Table V. The forwarding filters at the caches greatly reduce the load
on the NoC. An average of only around 0.56 flits are forwarded by a core each cycle.
Also, as discussed in Section 6.2, long phases of coherent behavior in typical workloads
result in a stable mapping of leaders and checkers. This enables smooth non-jittery
traffic in the NoC, and reduction in clogging of routers.

Further investigations were performed by increasing the NoC hop latency and
changing the NoC topology. The observations in the first experiment are shown in Fig-
ure 19. As the hop latency is doubled from 2 to 4 cycles, the effect on the slowdown is
negligible. When further doubled to an unrealistic value of 8 cycles, we see an increase
of about 8% in the runtime (high load scenario). Thus, we see that for all reasonable
operating values of the hop latency, the slowdown remains unperturbed. This is in line
with the view of the leader and checker threads’ execution as one long pipeline. An
increased inter-hop latency is consequently hidden by the pipelining effect.

Figure 20 shows the effect of changing the NoC topology to a mesh. We see that there
is no marked increase in the slowdown. The increase in runtime is limited to around
2%. This clarifies that the NoC is not a bottleneck in the system. These experiments
further bear testimony to the scalability of the system.

However, as reported in Section 6.3, the impact of NoC usage on the power consump-
tion is not negligible. If power is to be made the focus, or if the network is inadequately
designed (lower link width, or simpler topology), then metrics such as the proximity
between the leader and the checker can be factored into the arbiter heuristics. This
will open up interesting avenues for further exploration.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

1:24 R. Kalayappan et al.

6.4.5. Discussion on FluidCheck’s Scalability. Experiments were performed with 32 and
64 core systems and no marked increase in the slowdowns were observed (within 1%
of the 16 core case). However, while applying FluidCheck to much larger chips (say one
with 256 cores), we may face NoC related issues. The distances between a leader and
the corresponding checker core can be quite large. This may have undesirable effects
on the performance and the power consumption of the system. In such a scenario, a
tiling approach may be adopted. Going back to the 256 core (16 x 16) example, we
recommend it be logically partitioned into tiles of 16 cores (4 x 4) each, and schedule
threads on these tiles. The slowdowns observed should be the same as the 16-core chip
case.

6.4.6. Time to Detection Study. A fault injection experiment was performed to determine
the time taken to detect the occurrence of a soft error. Random bit flips were introduced
in the latches in the latches of the fetch, decode and execute stages. The average time
to detect the induced error was 129.17, 114.89 and 166.23 cycles respectively (medium
workload, SP-UALF policy).

7. CONCLUSION AND FUTURE WORK

Manycore processors, with multi-threading capabilities, present an attractive platform
for reliable execution in soft-error prone environments. In this context, FluidCheck
was introduced — a highly flexible redundant-threading framework, that seeks to im-
prove the throughput of the system by attempting a balanced consumption of resources
across cores. As compared to the mean slowdown of 47% and 37% achieved by the semi-
nal prior works SRT and CRT respectively (medium load), the architecture and arbiter
schemes discussed in this paper achieve total coverage with a mere 27% penalty in per-
formance.

Single-threaded workloads were studied in this work. FluidCheck can be extended
by incorporating the techniques described in [Rashid and Huang 2008] to allow adding
multi-threaded workloads to the mix. The FluidCheck architecture opens up interest-
ing avenues for further exploration. In the future we wish to explore designs with more
cores, more threads per core, and more elaborate NoCs.

REFERENCES

C. Acosta, F.J. Cazorla, A. Ramirez, and M. Valero. 2009. Thread to Core Assignment in SMT On-Chip
Multiprocessors. In SBAC-PAD.

T.M. Austin. 1999. DIVA: a reliable substrate for deep submicron microarchitecture design. In Micro.

D. Bernick, B. Bruckert, P.D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen. 2005.
NonStop®advanced architecture. In DSN.

S. Chatterjee, C. Weaver, and T. Austin. 2000. Efficient checker processor design. In Micro.

A. El-Moursy, R. Garg, D.H. Albonesi, and S. Dwarkadas. 2006. Compatible phase co-scheduling on a CMP
of multi-threaded processors. In IPDPS.

d. Feliu, J. Sahuquillo, S. Petit, and J. Duato. 2013. L1-bandwidth Aware Thread Allocation in Multicore
SMT Processors. In PACT.

M.A. Gomaa and T.N. Vijaykumar. 2005. Opportunistic Transient-Fault Detection. SIGARCH Comput. Ar-
chit. News (2005).

W. Huang, K. Rajamani, M.R. Stan, and K. Skadron. 2011. Scaling with Design Constraints: Predicting the
Future of Big Chips. Micro (2011).

S. Hukerikar, K. Teranishi, P.C. Diniz, and R.F. Lucas. 2014. An evaluation of lazy fault detection based on
Adaptive Redundant Multithreading. In HPEC.

H. Jeon and M. Annavaram. 2012. Warped-DMR: Light-weight Error Detection for GPGPU. In MICRO.

A.B. Kahng, B. Li, L. Peh, and K. Samadi. 2009. ORION 2.0: A Fast and Accurate NoC Power and Area
Model for Early-stage Design Space Exploration. In DATE.

R. Kalayappan and S.R. Sarangi. 2013. A survey of checker architectures. Comput. Surveys (2013).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors1:25

S. Kumar and A. Aggarwal. 2008. Speculative instruction validation for performance-reliability trade-off. In
HPCA.

S. Li, J. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P. Jouppi. 2009. McPAT: An integrated power,
area, and timing modeling framework for multicore and manycore architectures. In Micro.

G. Malhotra, P. Aggarwal, A. Sagar, and S.R. Sarangi. 2014. ParTejas: A Parallel Simulator for Multicore
Processors. In ISPASS.

P. Montesinos, W. Liu, and J. Torrellas. 2007. Using Register Lifetime Predictions to Protect Register Files
against Soft Errors. In DSN.

S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. 2002. Detailed design and evaluation of redundant multi-
threading alternatives. SIGARCH Comput. Archit. News (2002).

S. Parekh, S. Eggers, and H. Levy. 2000. Thread-Sensitive Scheduling for SMT Processors. Technical Report.
University of Washington.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. 2004. Pinpointing Representative
Portions of Large Intel® Itanium®Programs with Dynamic Instrumentation. In Micro.

M. Prvulovic, Z. Zhang, and J. Torrellas. 2002. ReVive: cost-effective architectural support for rollback re-
covery in shared-memory multiprocessors. In ISCA.

M.W. Rashid and M.C. Huang. 2008. Supporting highly-decoupled thread-level redundancy for parallel pro-
grams. In HPCA.

M.W. Rashid, E.J. Tan, M.C. Huang, and D.H. Albonesi. 2005. Exploiting Coarse-Grain Verification Paral-
lelism for Power-Efficient Fault Tolerance. PACT (2005).

J. Ray, J.C. Hoe, and B. Falsafi. 2001. Dual use of superscalar datapath for transient-fault detection and
recovery. In Micro.

S.K. Reinhardt and S.S. Mukherjee. 2000. Transient fault detection via simultaneous multithreading. In
ISCA.

E. Rotenberg. 1999. AR-SMT: a microarchitectural approach to fault tolerance in microprocessors. In Fault-
Tolerant Computing.

S.R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter. 2015. Tejas: A Java Based Versatile Micro-
architectural Simulator. In PATMOS.

A. Settle, J. Kihm, A. Janiszewski, and D. Connors. 2004. Architectural support for enhanced SMT job
scheduling. In PACT.

L. Spainhower and T.A. Gregg. 1999. IBM S/390 parallel enterprise server G5 fault tolerance: a historical
perspective. IBM J. Res. Dev. (1999).

P. Subramanyan, V. Singh, K.K. Saluja, and E. Larsson. 2010. Multiplexed redundant execution: A technique
for efficient fault tolerance in chip multiprocessors. In DATE.

Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. 2000. Slipstream Processors: Improving Both
Performance and Fault Tolerance. In ASPLOS.

S. Thoziyoor, N. Muralimanohar, J.H. Ahn, and N.P. Jouppi. 2008. CACTI 5.1. Technical Report. HP Labora-
tories.

D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, and R.L. Stamm. 1996. Exploiting choice: Instruc-
tion fetch and issue on an implementable simultaneous multithreading processor. In ACM SIGARCH
Computer Architecture News.

D.M. Tullsen, S.J. Eggers, and H.M. Levy. 1995. Simultaneous multithreading: Maximizing on-chip paral-
lelism. In ISCA.

X. Vera, J. Abella, J. Carretero, and A. Gonzalez. 2010. Selective replication: A lightweight technique for soft
errors. ACM Trans. Comput. Syst. (2010).

J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron. 2014. Real-world Design and
Evaluation of Compiler-managed GPU Redundant Multithreading. In ISCA.

Huiyang Zhou. 2006. A Case for Fault Tolerance and Performance Enhancement Using Chip Multi-
Processors. CAL (2006).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article 1, Publication date: January 2015.

