SybilInfer: Detecting Sybil Nodes using Social Networks

Ashutosh Jain

(2011MCS2566)

Chandra Prakash

(2011MCS2610)

Motivation

- A single entity/user can pretend to have multiple identities
 - Sybil Attack
- Distributed Systems Security
 - Byzantine Consensus
 - Secure routing in DHTs
- SybilInfer is an algorithm for labelling nodes in a social network as honest user or Sybils.
- Assumption: bound on fraction of dishonest identities

Sybil Attack

- Sybil identities can own a large fraction of all identities
 - -Distributed systems security solutions fail...
- Botnets
 - -Zombie machines
 - -Average size > 20,000

How to bound the fraction of dishonest nodes?

Trusted Central authority

Distributed Solutions?

Social Networks

Leveraging Social Networks

- Resource Constraint
 - bound on number of trust relationships between attackers and honest nodes
 - Attacker cannot create edges between honest nodes and Sybil identities

Leveraging Social Networks

- Social networks are Fast Mixing
 - Random walks quickly convergence to stationary distribution
- Sybil attacks induce a bottleneck cut
 - Fast mixing is disrupted
- Knowledge of an apriori honest node
 - Breaks Symmetry

Approach used:

- Design Philosophy
 - Optimal use of all information available in the graph
 - No assumptions on threshold of attack edges

Formal Model

- Properties of Mixing times
 - Depend on random walks
 - and where they end
- Each vertex performs S random walks
 - length $| = \log(|V|)$ - Transition probability $P_{ij} = \begin{cases} \min\{\frac{1}{d_i}, \frac{1}{d_j}\} & \text{if } i \to j \in E \\ 0 & \text{otherwise} \end{cases}$
 - Uniform stationary distribution (without attack)
- Let T = set of vertex pairs <start vertex, end vertex> for each random walk called Traces.

Formal Model

- Assign probabilities of cuts being honest $P(X = Honest \mid T)$
- Using Bayes Theorem, we have that:

$$P(X = Honest \mid T) = \frac{P(T \mid X = Honest) \cdot P(X = Honest)}{Z}$$

$$Z = \sum_{X \subset V} P(T \mid X = Honest) \cdot P(X = Honest)$$

• Next Challenge: Model P(T | X = Honest)

Formal Model

$$probxx = \frac{1}{|V|} + Exx$$

$$probx\,\overline{x} = \frac{1}{|V|} - Ex\,\overline{x}$$

$$P(T \mid X = honest) = \left(prob_{xx}\right)^{N_{XX}} \left(prob_{x\overline{x}}\right)^{N_{X}\overline{x}} \left(prob_{\overline{x}\overline{x}}\right)^{N_{\overline{X}}\overline{x}} \left(prob_{\overline{x}x}\right)^{N_{\overline{X}}\overline{x}}$$

Estimating E_{xx} / prob_{xx}

- We could sample E_{xx} as well
 - $-P(X,E_{xx}|T)$
 - Expensive
- Instead, we shall directly estimate the best E_{xx}

$$prob_{xx} = \frac{\sum_{x \in X} \sum_{y \in X} P_{xy}^{l}}{|X|} \cdot \frac{1}{|X|}$$

$$prob_{xx} = \frac{N_{XX}}{N_{XX} + N_{X}\overline{x}} \cdot \frac{1}{|X|}$$

$$P(T \mid X = Honest)$$

$$P(T \mid X = H) = \left(\frac{N_{XX}}{N_{XX} + N_{X\overline{X}}} \cdot \frac{1}{\mid X \mid}\right)^{N_{XX}} \left(\frac{N_{X\overline{X}}}{N_{X\overline{X}} + N_{XX}} \cdot \frac{1}{\mid \overline{X} \mid}\right)^{N_{X\overline{X}}} \left(\frac{N_{\overline{X}\overline{X}}}{N_{\overline{X}\overline{X}} + N_{\overline{X}X}} \cdot \frac{1}{\mid \overline{X} \mid}\right)^{N_{\overline{X}\overline{X}}} \left(\frac{N_{\overline{X}\overline{X}}}{N_{\overline{X}X} + N_{\overline{X}X}} \cdot \frac{1}{\mid \overline{X} \mid}\right)^{N_{\overline{X}X}}$$

Sampling

$$P(X = Honest \mid T) = \frac{P(T \mid X = Honest) \cdot P(X = Honest)}{Z}$$

- Sample from above distribution
- Marginal Probabilities
 - P(Node j is honest) = # j appears in samples/ #samples
 - Can label nodes as honest/dishonest
- Sampling algorithm : Metropolis-Hastings
 - Current State : X₀
 - Propose a new state X_1 with probability $Q(X_1|X_0)$
 - Accept new state with probability

$$\min\{\frac{P(X_{1} = Honest \mid T)Q(X_{0} \mid X_{1})}{P(X_{0} = Honest \mid T)Q(X_{1} \mid X_{0})}, 1\}$$

Theoretical Guarantees

Ideal Scenario:

- Without attack, the cuts obtained from model have E_{xx} =0
- Under attack, the cuts obtained from the model have $E_{xx} > 0$ regardless of attacker strategy

Real World:

- Without attack, we obtain cuts with E_{xx} approx 0 (upper bounded by E_{max})
- Under a major Sybil attack, we obtain cuts with $E_{xx} > E_{max}$ regardless of attacker strategy

LiveJournal

- Extract a social sub graph from LiveJournal
 - Three hop neighbourhood of a random node
- Processing
 - Remove nodes with degree < 3
 - 33170 nodes
- The model found a bottleneck cut is this topology
 - False positive or Sybil attack?
 - Remove the bottleneck cut
 - 31603 nodes

Related Work

- SybilGuard[SIGCOMM 06] & SybilLimit [Oakland 08]
 - Assumes short random walks lie mostly in the honest region
 - Results in poor threshold to colluding attackers
 - Heuristic validation approach
 - Honest nodes random walks intersect
 - Birthday paradox
 - High false negatives

Conclusions

Proposed a formal model for inferring Sybil identities in a Social Network

- Proposed solution can be applied to security critical centralized/distributed applications
 - High tolerance to colluding adversary
 - Low false negatives

References

1. G. Danezis and P. Mittal. Sybilinfer: Detecting Sybil nodes using social networks. In NDSS, 2009.

Thank you!

Questions??