Mining Specifications of
Malicious Behavior

IBM Research

Mihai Christodorescu (work done at

University of Wisconsin)

Somesh Jha University of Wisconsin
Christopher Kruegel ucss

Why Understand Malicious Behavior?

e Forensics
- Understand what a malware does

 Malware Detector
- Move to behavior-based detectors

- These need detectors need a high-level
specification of malware

Wide Spectrum of Detectors

o Static detectors: eDynamic/hybrid
detectors, host IDS:

TV

YIENNA

IIHI EF I T

Misuse Detection

Disti similar...

Sample specification:

- Creates an email with itself
attached, and
- Collects email addresses, and

- Sends emails
i\
\>\‘

They all require high-quality specifications
of malicious behavior.

Key Definitions

Variants : New strains of viruses that borrow
code, to varying degrees, directly from
other known viruses.

Source: Symantec Security Response Glossary

Virus family: a set of variants with a
common code base.

Signature-Based Detection

lea
push
push
call
POP
lea
POp
push
push
lea
push
call

eax, [ebp+Data]
offset aServices exe
eax

_strcat

ecx

eax, [ebp+Data]

ecx

edi

eax

eax, [ebptExistingFileName]
eax

ds:CopyFileA

8D 85 D8 FE FF
68 /8 8E 40 00
50
E8 69 06 00 00
29
8D 85 D8 FE FF
29
o7
]0)
8D 85 D4 FD FF
50
FF 15 CO 60 40

FF

FF

FF

00

Sighature

e Signatures (aka scan-strings) are the most

common malware detection mechanism.

Current Signature Management

McAfee: release daily updates
- Trying to move to hourly “beta” updates

Threats New Threats Threats
Detected Added Updated

147,382 22

4579 147,828 27 231
4580 148,000 11 236
4581 148,368 42 140
4582 148,721 16 203
4583 149,050 18 117

Source: McAfee DAT Readme

Signature Detection Does Not Scale

One sighature for one malware instance.

g'Gif g
P

Goals for Better Detection

 Make the malware writer’s job as hard as
possible.

o Detect malware families,
not individual malware instances.

 Move away from syntactic signatures.

Threat Model

e Malware writers craft their programs so to
avoid detection.

Two common evasion techniques:
- Program Obfuscation
(Preserves malicious behavior)

- Program Evolution
(Enhances malicious behavior)

Obfuscations for Evasion

Nop insertion

Register renaming

Junk insertion

Instruction reordering

Encryption

Compression

Reversing of branch conditions
Equivalent instruction substitution
Basic block reordering

Evasion Through Junk Insertion

lea

iush
h

pus
call

pPop
lea

Pop
push
push

lea
push
call

_strcat

eax, [ebp+Data]

offset aServices exe

eax

ecx
eax, [ebpt+Data]
ecx
edi
eax

eax, [ebptExistingFileName]
eax
ds:CopyFileA

8D
68
50
ES
59
D
9
57
0
8D
50
FF

85 D8 FE FF
78 8E 40 00

69 06 00 00

85 D8 FE FF

85 D4 FD FF

15 CO 60 40

FF

FF

FF

00

Sighature

Evasion Through Reordering

lea
label two:
lea
push
call
label one:

call

eax, [ebp+Data]

Jmp label one

eax, [ebp+Data]

eax
ds:CopyFileA

Jjmp label three

_strcat

Jjmp label two

label three: ...

8D 85 D8 FE FF FF
90*

68 /8 8E 40 00
90*

50
O*
8 69 06 00 00
90*

9

90*

90*
S10)
90*
FF 15 CO 60 40 00

Regex Sighature

Evasion Through Encryption

lea esi, data area 8D 85 D8 FE FF FF
mov ecx, 37 90*
again: 68 78 8E 40 00
xor byte ptr [esitecx], 0x01 90*
floop again 50
O*

Jmp data area
] 8 69 06 00 00
90*

] 9

data area:

90*
db 8C 84 D9 FF ...
] 90*
db FE 14 C1 61 ... S10)
90*
FF 15 CO 60 40 00

Regex Sighature

Evasion Through Evolution

e Malware writers are good at software
engineering:
- Modular designs
- High-level languages

- Sharing of exploits, payloads, and evasion
techniques

Example:

Beagle e-mail virus gained additional
functionality with each version.

Beagle Evolution

Source: J. Gordon, infectionvectors.com

e More than 100 variants, not counting

associated com
Formglieder

Mitglieder Bank Info Theft Tarno

Spam relay \ T / Password Theft

[—

Tooso < Beagle —>| LDPinch

Weakens security / Mass mailer \ Password Theft

Lodear Monikey
Update Engine Propagation Mgr

Describing Malicious Behavior
[Christodorescu et al., Oakland 2005]

e Informal description:
“Mass-mailing virus”

e A more precision description:

“A program that:
sends messages containing copies of
itself,
using the SMTP protocol,
in a large number over a short period
of time.”

Malspec

o A specification of behavior.

push 10h connect(Y); Y
push eax
push edi
call connect —
; compose SMTP — I
; command "HELO ..." “HELO™
push eax send(Z,T);
push ecx
push edi yA T
call send
Syntactic info Semantic info
Malware Instance ~~— ~ —
(Netsky.B)

Malspec

Obfuscation Preserves Behavior

push
push
push
call

push
push
push
call

10h

eax

edi

connect

; compose SMTP

; command "HELO ..."
eax

ecx

edi

send

push
nop
push
Xor
Xor
push
call

push
push
Pop
push
push
call

10h

eax
eax, ebx

eax, ebx

edi

connect

; compose SMTP
; command "HELO ..."
eax
eax
eax
ecx

edi

send

e Junk insertion + code

reordering.

Detection Using Malspecs

Static detection:

Given an executable binary,
check whether it satisfies
the malspec.

Just like model checking, but...

« Malicious code allows no
assumptions to be made

e Real-time constraints

7~ Malspec—™

¢

E5[_]

-

J

O

4
oy

A Behavior-Based Detector

e Match the syntactic constructs, then check
the semantic information.

connect(Y); Y
“HELO”
send(Z,T);
Z T
Syntactic info Semantic info
— _
—~—

Malspec

Check the Semantic Info

Program (Netsky.O):
push 10h
push eax
push [ebp+s] send_email() ——
call connect =
; compose SMTP
ﬁ::h ggi [ebp+ ; command “HELO ..."
’ p+s] lea eax, [ebp+arg1]
push eax h
Call cand amoaoil pus eax
N lea eax, [ebp+buffer]
h
E;I'i S'\a/‘)-(rp cand and _rcyv SMTP_Send_and_rCV()
push eax
push [ebp+arg1]
mov eax, [ebp+arg2]
push [eax]

call send

Check with the Oracle

e« Assume we have an oracle that can
validate value predic/aiees.

Does
eax before == ebx after
for the code sequence:

push eax
call foo
mov ebx, [ebp+4]

N ; _

Yes. j

Check the Semantic Info

Program (Netsky.O):
push 10h
push eax
push____[ebp:s] send_email() —
A:l call connect =
; compose SMTP
{)eu:h gg)): [ebp+ ; command “HELO ..."
» [ebprs] lea eax, [ebp+arg1]
push eax h
call cand amail pus eax
. - ' lea eax, [ebp+buffer]
h
E;Ilsi. S"aA)-(rD coand _and _rcyv SMTP_Send_and_rCV()
push eax
push [ebp+arg1]
mov eax, [ebp+arg2]
push [eax]

B:| call send

Query the Oracle

Programmiies

push
push

push | Does
A:| call A memory[ebp@A+4] ==
memory[ebp@B+4] hold

push
lea
push
call

and_rcv()

rg1]
bp+arg?]

A Recipe for an Oracle

 Instance of program verification problem:
Does program P respect property ¢ ?

Code More powerful, higher cost »

Fragment P
Pattern | Random | Simplify UCLID
Matching

Execution [Theorem Prover] Model Checker

Expressions
cu e, l l l 1

Yes No Yes Yes

Evaluation of Malspecs

Decryption sig

Netsky.B —>

Mass-mailing sig

McAfee uses individual signatures for each worm.

Prototype
detector

Netsky.C

Netsky.D

Netsky.O

Netsky.P

Netsky.T

Netsky.W

SEX TSN NN S

Malspecs provide forward detection.

Additional Information

e Papers

- M. Christodorescu and S. Jha, Testing Malware
Detectors, International Sympoisum on Testing
and Analysis (ISSTA), 2004

- M. Christodorescu, S. Seshia, S. Jha, D. Song,
and R. Bryant, Semantics-Aware Malware
Detection, IEEE Symposium on Security and

Privacy (Oakland), 2005.

e Website
- http://www.cs.wisc.edu/wisa/

Problem 2: Spec. Imprecision

Too general = false positives
— Angry users

— |Infected machines
Too specific = false negatives

Our Automatic Solution

MINIMAL: a technique for mining malicious
specifications

e (Mostly) automatic
e Flexible specification language
e Fast

e Performs well (compared to a human
expert)

Specification Language

What’s In a Specification?

Requirements for obfuscation
resilience:

1. Describe only relevant
operations

2. Capture dependencies
where present

3. Preserve independence of operations

Specifying Malicious Operations

« We chose system calls

- Compatible with specifications for behavior-
based detectors

- Define interface between trusted OS and
untrusted programs

e Mining algorithm is not restricted to the
system-call interface.

Specifying Malicious Constraints

e Program operations are insufficient to
distinguish malicious from benign.

« We need to capture relations between
operations:

open (“file”) ; read G@ send(@

Constraints = logical formulas over system-
call arguments

A Sample Specification (Malspec)
Send Email Read/copy self

X:=socket()
X =X,

connect(X,) S:=process_name()
X, =X, S=5,

send(X;, “EHLO) Z-=open(sS;)
7 -7,

X3 = X4
Send(x4,“DATA”) Y::read(ZZ)
Xy =X, StringEqual(T,Base64(Y))
send(Xs,T)

—()—()

A Sample Specification (Malspec)

e Rich specification can be “dumbed down”

X:=socket()
X = xz?
connect(X,) S:=process_name()
g 5 I
send(X,, “EHLO™) O OZZ:OPGH(Sz)

Syntactic (byte) signature:

486F 7720 646F 2049 206c 6f6f 6b20
696e 2068 6578 310a

SENaCRE; T ()

Mining Algorithm

The Specification Mining Problem

Known malware

. 4

Known benign programs

\

> MINIMAL =>

Specification of malicious behavior

X:=socket()
X=X

cccccc t(Xy)
X, =X

send(Xs, “EHLO™)
X, = X
send(X,, “DATA™)
X, =X

send(Xs,T)

i
]
y

5

S:=process_name()
S=5,

=open(S,)

z2=2,
Y:=read(Z,)

StringEqual(T,Base64(Y))

The Basic Mining Operation

Known malware

. 4

Known benign program

A 4

—>

Malware dependence graph\

Minimal
malspec

r= |bes

J

S1(=Is B Compute dependence graphs | Bjds{slA) Compute graph difference

Multi-Program Mining

VS.

-

-

A 4

——>

ﬂ

——>

iy

Maximal union of malspecs:

i

System-Call Dependence Graph

« We use a dynamic analysis to construct the
dependence graph

- Static analysis too imprecise on binary code

e Steps:
1. Collect system-call trace
2. Infer dependencies between system calls

3. Construct (an underapproximation of the)
dependence graph

Discovering Dependences

NtOpenKey((372,)0x20019, {24, 356,
"ActiyeComputerName”, 0x40, 0, 03})

NtQueryVajueKey(372)y'ComputerName”, Full, {
I nlr‘lv:O’ Type:l,

Def-Use ComputerName' @

Dependences 5)

Substring

NtClose@ Dependences

Discovering Local Constraints

e Access to well-defined resources:
- Windows registry
- Access to self
- System files/directories

NtCreateFile (..., { ...,(l-Worm.Mydoom.l.exe")... }, ...)

Dependence Graph Example

NtOpenKey @)
NtQueryValuerew(B372).., { ..., D

NtCreateSection(...)

NtloDeviceControl(..., OutBuffer=‘

NtOpenKey

X =X,

NtQueryValueKey
Y = Substring (Y,)

NtloDeviceControl

NtCreateSection O

Graph Differencing

Problem:

Find the smallest subgraph of malicious
operations that does not appear in any
benign graph.

Solution:
Minimal Contrast Subgraph

Minimal Contrast Subgraphs

e Idea:
Minimal contrast subgraphs and
maximal common edge sets
are duals.

e Finding maximal common edge set:
- Consider all edge sets (order by size)

- Eliminate edge-set candidates as early
as possible

Mining Contrast Subgraphs

Malware E [eljfe] Bl | Benign
dependence O] dependence
araph |17 % R R R AW aph

Q P 3 Rl R

o] W
[e)

 Size of graphs: N = 100K-1.5M nodes

e Worst-case complexity: O(N!)

Heuristics Reduce Problem Size

 Normalize dependence graph

- Replace system-call sequences with shorter
equivalents

e Eliminate disconnected subgraphs

e Eliminate trivial subgraphs

[see paper for details]

Evaluation

Evaluating MINIMAL

e Goals:

- Compare MINIMAL malspecs with those from
human expert

- Use mined malspecs with behavior-based
detector

Experimental Setup

e Trace collection in Windows 2000:

- Malware samples run with no user input (cf.
expected execution model)

- Benign samples run with normal user input
- Execution for 1 or 2 minutes

e 16 malware samples:
- Netsky, MyDoom, Beagle
e 6 benign programs:
- Firefox, Thunderbird, installers

MINIMAL vs. Human Expert

MINIMAL @
malspecs

Behavioral features as given by
Symantec:

Symantec.com > Security Response

STCIT Ea LAl L RN TNTE may

&

W32.Netsky@mm .
Risk Level 2: Low

= See all Viru
= Secure youl

SUMMARY TECHNICAL DETAILS REMOVAL R the

Printer Friendly Page 5]

Discovered: February 16, 2004

Updated: February 13, 2007 12:17:22 PM

Also Known As: WORM_NETSKY.A [Trend]

Type: Worm

Systems Affected: Windows 2000, Windows 35, Windows 22, Windows Me, Windows NT, Windows

Server 2003, Windows XP Search Thre

Search by na
When W32.Metsky@mm runs, it does the following: i

1. Creates a mutex named "AdmMoodownlKIS002." This mutex allows only one instance of the

worm to execute in memory.

Mined Malspecs for Netsky.A

MINIMAL

malspecs
Create mutex v
Self-installation v
Modify boot sequence v
Terminate antivirus v
Email self as ZIP file
Copy self to network drive

MINIMAL Specs 1n Detection

Missed
malware M —_ MINIMAL =
2

Malware
Detection

e Using mined malspecs in semantics-aware
malware detection:

Netsky.A malspec — Netsky.D, E, F, ...

e Work \ MAL

e Sensitive to test environment

- Malicious behavior might not be observed
during tracing.

» Underapproximation of dependence graph
- Complex constraints are not discovered.

e Sensitive to test-set selection
- Not all differences are malicious behaviors.

questiong,

Mining Specifications of
Malicious Behavior

Somesh Jha
jha@cs.wisc.edu

	Mining Specifications of Malicious Behavior
	Why Understand Malicious Behavior?
	Wide Spectrum of Detectors
	Misuse Detection
	Key Definitions
	Signature-Based Detection
	Current Signature Management
	Signature Detection Does Not Scale
	Goals for Better Detection
	Threat Model
	Obfuscations for Evasion
	Evasion Through Junk Insertion
	Evasion Through Reordering
	Evasion Through Encryption
	Evasion Through Evolution
	Beagle Evolution
	Describing Malicious Behavior�	[Christodorescu et al., Oakland 2005]
	Malspec
	Obfuscation Preserves Behavior
	Detection Using Malspecs
	A Behavior-Based Detector
	Check the Semantic Info
	Check with the Oracle
	Check the Semantic Info
	Query the Oracle
	A Recipe for an Oracle
	Evaluation of Malspecs
	Additional Information
	Problem 2: Spec. Imprecision
	Our Automatic Solution
	Specification Language
	What’s In a Specification?
	Specifying Malicious Operations
	Specifying Malicious Constraints
	A Sample Specification (Malspec)
	A Sample Specification (Malspec)
	Mining Algorithm
	The Specification Mining Problem
	The Basic Mining Operation
	Multi-Program Mining
	System-Call Dependence Graph
	Discovering Dependences
	Discovering Local Constraints
	Dependence Graph Example
	Graph Differencing
	Minimal Contrast Subgraphs
	Mining Contrast Subgraphs
	Heuristics Reduce Problem Size
	Evaluation
	Evaluating MINIMAL
	Experimental Setup
	MINIMAL vs. Human Expert
	Mined Malspecs for Netsky.A
	MINIMAL Specs in Detection
	Limitations of MINIMAL
	Mining Specifications of Malicious Behavior

