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C11 memory model

C/C++ 
Compiler

System 
Architecture

x:=1
barrier

b:=y (0)

y:=1
barrier

d:=x (0)
Axiomatic reasoning
reads-from relation (rf)
modification-order (mo)
Synchronizations (sw, dob)
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(reordering)

(write-issue)

(read-shared)

(parallel-composition)

(write-update)

Due to the dynamic nature 
of technique

• local operations
• branches  and paths

SUB-TASK: Identify MCA model semantics [Colvin and Smith, FM 2018]

back


