
MoCA:
Dynamic Verification of C/C++11

Concurrency over Multi-copy Atomics

Sanjana Singh, Divyanjali Sharma, Subodh Sharma

Indian Institute of Technology Delhi

2021

Memory models

- Interleaving
- varying degrees of Reordering

Memory models

- Interleaving
- varying degrees of Reordering

a:=y (1)

x:=1

b:=y (0)

c:=x (1)

y:=1

d:=x (0)

sequentially consistent
- interleaving
- no reordering

Memory models

- Interleaving
- varying degrees of Reordering

a:=y (1)

x:=1

b:=y (0)

c:=x (1)

y:=1

d:=x (0)

sequentially consistent
- interleaving
- no reordering

a:=y (1)

x:=1

b:=y (0)

c:=x (1)

y:=1

d:=x (0)

x86’s TSO
- interleaving
- WR reordering

Memory models

- Interleaving
- varying degrees of Reordering

a:=y (1)

x:=1

b:=y (0)

c:=x (1)

y:=1

d:=x (0)

sequentially consistent
- interleaving
- no reordering

a:=y (1)

x:=1

b:=y (0)

c:=x (1)

y:=1

d:=x (0)

x86’s TSO
- interleaving
- WR reordering

a:=y (1)

x:=1

b:=y (0)

c:=x (1)

y:=1

d:=x (0)

ARM
- interleaving
- all coherent reordering

C11 memory model

C11 memory model

https://www.cooldoger.com/2020/09

C11 memory model

C/C++
Compiler

System
Architecture

x:=1
barrier

b:=y (0)

y:=1
barrier

d:=x (0)

C11 memory model

C/C++
Compiler

System
Architecture

x:=1
barrier

b:=y (0)

y:=1
barrier

d:=x (0)
Axiomatic reasoning
reads-from relation (rf)
modification-order (mo)
Synchronizations (sw, dob)

Multi-copy Atomic model

• a single abstract view of shared memory

Shared Memory

P1 P2

Multi-copy Atomic model

• a single abstract view of shared memory

• behaviors can be explained solely through interleaving and reordering

Shared Memory

P1 P2

Multi-copy Atomic model

• a single abstract view of shared memory

• behaviors can be explained solely through interleaving and reordering

Shared Memory

P1 P2

version 8 and later

Multi-copy Atomic model

• a single abstract view of shared memory

• behaviors can be explained solely through interleaving and reordering

Shared Memory

P1 P2

x:=1 if (x=1)

a:=y(0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4

(IRIW)

Multi-copy Atomic model

• a single abstract view of shared memory

• behaviors can be explained solely through interleaving and reordering

Shared Memory

P1 P2

(IRIW)

x:=1 if (x=1)

a:=y (0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4

Multi-copy Atomic model

• a single abstract view of shared memory

• behaviors can be explained solely through interleaving and reordering

Shared Memory

P1 P2

(IRIW)

x:=1 if (x=1)

a:=y (0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4

C11 allows non-MCA

(IRIW) allowed under C11

x:=1 if (x=1)

a:=y (0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4
rf rf

sb sb

C11 allows non-MCA

(IRIW) allowed under C11

x:=1 if (x=1)

a:=y (0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4
rf rf

sb sb✗

✗

C11 allows non-MCA

(IRIW) allowed under C11

x:=1 if (x=1)

a:=y (0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4
rf rf

sb sb

C11 over MCA

C11 over MCA -- why?

C11 behaviors

Non-MCA behaviors

version 8 and later

✗

C11 over MCA -- why?

C/C++11 verification technique

safety property violation

C11 over MCA -- why?

C/C++11 verification technique

safety property violation

false positive?

C11 over MCA -- why?

Architecture verification technique

safety property violation

memory order

C11 over MCA -- why?

Architecture verification technique

safety property violation

memory order

false positive? false negative?

C11 over MCA -- why?

C/C++
Compiler

System
Architecture

Given a reordering
specification

What behaviors can
manifest on the

underlying architecture?

C11 over MCA -- why?

C/C++11 verification technique

safety property violation

Architecture verification technique

safety property violation

false positive?false positive?
false negative?

C11 over MCA

(IRIW) allowed under C11

x:=1 if (x=1)

a:=y (0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4
rf rf

sb sb

Modify event relations to restrict C11 behaviors to
MCA memory model

TASK:

C11 over MCA

(IRIW) allowed under C/C++11

x:=1 if (x=1)

a:=y (0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4
rf rf

sb sb

Modify event relations to restrict C11 behaviors to
MCA memory model

[Colvin and Smith, FM 2018].

TASK:

Modify event relations and rules to restrict C11
behaviors to MCA memory model

TASK:

PART I: Define an appropriate happens-before relation

PART II: Define appropriate coherence rules to ensure coherence wrt C11

Modify event relations and rules to restrict C11
behaviors to MCA memory model

TASK:

PART I: Define an appropriate happens-before relation

For C11 behaviors that can be justified
via interleaving and reordering

Modify event relations and rules to restrict C11
behaviors to MCA memory model

TASK:

PART I: Define an appropriate happens-before relation

For C11 behaviors that can be justified
via interleaving and reordering

through interleaving

Wx

Shared Memory

P1 P2

shadow-Wx

Reordering through Interleaving

Wx
shadow

Wx

thread t1 shadow-thread t1

Reordering through Interleaving

shadow-Wx

thread t1 shadow-thread t1

Wx

Ry

Rx

Reordering through Interleaving

t1:Wx

reads-from (rf)

t2:Wx t1’:sh-Wx t3:Rx

rf

C11 over MCA: axiomatic definition

t1:Wx

reads-from (rf)

t2:Wx t1’:sh-Wx t3:Wx t3:Rx

rf

C11 over MCA: axiomatic definition

()+

ithb

C11 over MCA: axiomatic definition

[Abdulla et al., POPL 2014]

()+

ithb

C11 over MCA: axiomatic definition

PART I: Define an appropriate happens-before relation
PART II: Define appropriate coherence rules to ensure coherence wrt C11

C11 over MCA: axiomatic definition

PART I: Define an appropriate happens-before relation
PART II: Define appropriate coherence rules to ensure coherence wrt C11

(shmo1)

C11 over MCA: axiomatic definition

PART I: Define an appropriate happens-before relation
PART II: Define appropriate coherence rules to ensure coherence wrt C11

(shmo2)

C11 over MCA: axiomatic definition

PART I: Define an appropriate happens-before relation
PART II: Define appropriate coherence rules to ensure coherence wrt C11

(shmo3)

C11 over MCA: axiomatic definition

PART I: Define an appropriate happens-before relation
PART II: Define appropriate coherence rules to ensure coherence wrt C11

C11 over MCA: axiomatic definition

Wx

Reordering through Interleaving

Wx

?

Reordering through Interleaving

Wx

?

Early-write
Transformation

Reordering through Interleaving

thread ti

Early-write
Transformation

Ry

Wy

Wx

Reordering through Interleaving

thread ti

Early-write
Transformation

Ry

Wy

Wx

✗

Reordering through Interleaving

thread ti

Early-write
Transformation

Ry

Wy

Wx

✗

x:=1

a:=y

y:=1

b:=x
T1 T2

sb sb

a:=y

x:=1

b:=x

y:=1
T1 T2

sb sb

a:=y

Reordering through Interleaving

thread ti

Early-write
Transformation

Ry

Wy

Wx

✗

MCA model [Colvin and Smith, FM 2018]

Reordering through Interleaving

MOCA’s Technique

Early-write Transformation (static)

Explore 1 maximal sequence
(using source-DPOR algorithm)

form hb relations on events

if more reversible
hb ordered events

property violation
detected

no more reversible
hb ordered events

Input C/C++11 program

Early-write Transformation (static)

Explore 1 maximal sequence
(using source-DPOR1 algorithm)

1[Abdulla et al., POPL 2014]
2NA race: race between non-
atomic memory accesses

NA race2 detected

MOCA’s Technique

Early-write Transformation (static)

Explore 1 maximal sequence
(using source-DPOR algorithm)

form hb relations on events

if more reversible
hb ordered events

property violation
detected

no more reversible
hb ordered events

Input C/C++11 program

Early-write Transformation (static)

Explore 1 maximal sequence
(using source-DPOR1 algorithm)

1[Abdulla et al., POPL 2014]
2NA race: race between non-
atomic memory accesses

NA race2 detected

O(T2|ε|2S)source-DPOR1

O(|O|2T2|ε|2S)MOCA

MOCA’s Technique

Early-write Transformation (static)

Explore 1 maximal sequence
(using source-DPOR algorithm)

form hb relations on events

if more reversible
hb ordered events

property violation
detected

no more reversible
hb ordered events

Input C/C++11 program

Early-write Transformation (static)

Explore 1 maximal sequence
(using source-DPOR1 algorithm)

1[Abdulla et al., POPL 2014]
2NA race: race between non-
atomic memory accesses

NA race2 detected

Comparative Results on litmus tests

CDSChecker [Norris and Demsky, OOPSLA 2013]
GenMC [Kokologiannakis et al., POPL 2017]
HMC [Kokologiannakis and Vafeiadis , ASPLOS 2020]

Comparative Results on litmus tests

CDSChecker [Norris and Demsky, OOPSLA 2013]
GenMC [Kokologiannakis et al., POPL 2017]
HMC [Kokologiannakis and Vafeiadis , ASPLOS 2020]

Comparative Results on benchmarks

Comparative Results on benchmarks

Comparative Results on benchmarks

Comparative Results on benchmarks

Thank You

C/C++11 over MCA

(IRIW) allowed under C/C++11 unless all events are sc ordered

x:=1 if (x=1)

a:=y(0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4
rf rf

sb sb

sc scsc sc

scsc

specified as:
x.store(1, memory_order_seq_cst);

x.load(memory_order_seq_cst);

other memory orders:
rlx⊏ {rel, acq}⊏ acq-rel⊏ sc

back

C/C++11 over MCA

(IRIW) allowed under C/C++11 unless all events are sc ordered

x:=1 if (x=1)

a:=y(0)

y:=1 if (y=1)

b:=x (0)

T1 T2 T3 T4
rf rf

sb sb

sc scsc sc

scsc

specified as:
x.store(1, memory_order_seq_cst);

x.load(memory_order_seq_cst);

other memory orders:
rlx⊏ {rel, acq}⊏ acq-rel⊏ sc

to

back

(reordering)

(write-issue)

(read-shared)

(parallel-composition)

(write-update)

Due to the dynamic nature
of technique

• local operations
• branches and paths

SUB-TASK: Identify MCA model semantics [Colvin and Smith, FM 2018]

back

