

ViEqui Optimal Stateless Model Checking based on *View-equivalence*

Sanjana Singh and Subodh Sharma

Indian Institute of Technology Delhi

RHPL 2023

ψ satisfied ?

RHPL 2023

Equivalence classes

Stateless model checkers partition executions into

 $\neg \psi$ 1// 1// $\neg \psi$ 1/

equivalence classes based on equivalence relations

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

Stateless model checkers explore a reduced state graph

Stateless model checkers partition executions into

equivalence classes based on equivalence relations

ViEqui. Optimal Stateless Model Checking based on View-equivalence

[Flanagan & Godefroid, POPL'05], [Abdulla et al., POPL'14] [Nguyen et al., CAV'18] [Zhang et al., PLDI'15] [Abdulla et al., TACAS'15]

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

 $W(x,v_1)$

 $W(x,v_2)$

R(x)

Eq1

R(x)

 $W(x,v_1)$

 $W(x,v_2)$

Eq2

R(x)

 $W(x,v_2)$

 $W(x,v_1)$

Eq3

[Albert et al., CAV'17] [Chalupa et al., POPL'18] [Abdulla et al., OOPSLA'18]

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

Existing equivalence relations

equivalence relation

#equivalence classes

View-equivalence

equivalence relation

View-equivalence

I. same set of *read events*

View-equivalence

- I. same set of *read events*
- II. Each *read event* reads the same value

View-equivalence vs Existing equivalence relations

• classical (*Mazurkiewicz*) - *reads-from* ordering *from-reads* ordering *modification* ordering

- reads-from *reads-from* ordering
- reads-value-from *causal-reads* ordering ≤ *reads-from* ordering
- View-equivalence NO ordering

reads-value-from vs view-equivalence

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

Tradeoff of causal ordering

equivalence relation

ordering on events

RHPL 2023

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

	class	sical	reads	-from	Reads-va	lue-from	View-equivalence				
#loops	(ODP	POR)	(RFSC)		(RVF-	SMC)	(ViEc	qui)			
	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time			
2	1425	0.36	157	0.04	65	0.04	8	0.02			
4	4,931,685	1346.377	99,577	36.32	1,187	0.19	16	0.03			
10	-	Timeout	-	Timeout	3,703,196	705.69	40	0.06			
20	-	Timeout	-	Timeout	-	Timeout	80	0.28			
<u></u>	Timeout: 30mins										

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

Applicable for sound analysis

print (var)

assert (var1 or var2)

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

Applicable for sound analysis

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023

(+

ViEqui. Optimal Stateless Model Checking based on View-equivalence

- explore an execution (eq-1)
- manipulate order of events

- explore an execution (eq-1)
- manipulate order of events
- explore next execution (eq-2)

- explore an execution (eq-1)
- manipulate order of events
- explore next execution (eq-2) repeat

equivalence relation

coherence operationally

ViEqui. SMC under view-equivalence

- Deterministic and terminating C/C++ programs
- Single input
- Under sequential consistency
- *Complete*: each maximal sequence represents an equivalence class
- Sound: each equivalence class is explored
- Optimal: each equivalence class is explored exactly once
- #view-equivalence classes: $|\mathcal{V}|^{|\mathcal{E}^{\mathbb{R}}|}$

Implemented over Nidhugg. available at: <u>https://github.com/nidhugg/nidhugg</u>

Tested over 16,154 litmus tests of concurrent C programs borrowed from [Abdulla et al., OOPSLA '18]

RHPL 2023

classical equivalence [Abdulla et al., POPL '14]

reads-from equivalence [Abdulla et al., OOPSLA '19]

reads-value-from equivalence [Agarwal et al., CAV '21]

	ODPOR		RFSC		RVF-SMC		ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
monabsex(5)	14400	2.56	1296	0.31	6	0.04	1	0.02
monabsex(100)	-	То	-	То	101	1.20	1	0.09
monabsex(500)	-	То	-	То	501	195.69	1	2.63
redundant-co(8)	1969110	338.84	217	0.15	11	0.04	7	0.02
redundant-co(10)	-	То	331	0.16	11	0.03	7	0.02
redundant-co(50)	-	То	7651	2.58	11	0.03	7	0.04
redundant-co(1000)	-	То	-	То	11	0.16	7	3.24
IBM-incdec(50)	-	То	-	То	-	То	3	7.70
IBM-incdec(100)	-	То	-	То	-	To	3	34.23

To: Timeout (30 mins)

ViEqui. Optimal Stateless Model Checking based on View-equivalence

Benchmarks with constant number of view-equivalence classes

	ODP	OR	RF	FSC RVI		-SMC	ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
monabsex(5)	14400	2.56	1296	0.31	6	0.04	1	0.02
monabsex(100)	-	То	-	То	101	1.20	1	0.09
monabsex(500)	-	То	-	То	501	195.69	1	2.63
redundant-co(8)	1969110	338.84	217	0.15	11	0.04	7	0.02
redundant-co(10)	-	То	331	0.16	11	0.03	7	0.02
redundant-co(50)	-	То	7651	2.58	11	0.03	7	0.04
redundant-co(1000)	-	То	-	То	11	0.16	7	3.24
IBM-incdec(50)	-	То	-	То	-	То	3	7.70
IBM-incdec(100)	-	То	-	То	-	То	3	34.23

ViEqui. Optimal Stateless Model Checking based on View-equivalence

Benchmarks with many writes but few values and causal dependencies on reads

	OD	POR	RFSC R		RVF-S	RVF-SMC		Equi	Assert
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time	violation
nd-array2(4,4)	2616	0.89	292	0.19	534	0.10	51	0.04	No
nd-array2(6,6)	-	То	75486	21.67	63491	8.34	2163	3.06	No
nd-array2(14,7)	-	То	1649221	610.68	908984	156.31	18731	120.74	No
nd-array1(100,100) nd-array1(1000,500)	1 1	0.22 0.03	1 1	12.87 0.15	1 1	0.06 0.03	1 1	0.19 0.08	Yes Yes

Benchmarks with writes of different values and no causal dependencies on reads

	OD	POR	RF	FSC	C RVF-		ViI	ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time	
swsc-co1(20)	-	То	8040	14.80	8060	17.06	7240	5.71	
swsc-co1(50)	-	То	125100	860.71	125150	1769.71	120100	375.43	
swsc-co1(60)	-	То	-	То	-	То	208920	891.21	
swsc-co10(10)	-	То	10	0.04	11	0.04	10	0.02	
swsc-co10(100)	-	То	100	2.19	101	7.69	100	0.76	
swsc-co10(250)	-	То	250	41.89	251	266.39	250	9.07	
alpha2(10)	-	То	111	0.14	123	0.14	111	0.08	
alpha2(100)	-	То	10101	218.71	10203	774.59	10101	191.57	
alpha2(150)	-	То	22651	1161.76	-	То	22651	1076.26	

Mutual exclusion benchmarks from SV-Comp [Beyer 2021]

	ODI	POR	RF	SC	RVF-S	SMC	ViI	Equi
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
burns(5)	2353602	1046.92	-	То	17382	6.38	36	0.05
burns(10)	-	То	-	То	-	To	121	0.32
burns(40)	-	То	-	То	-	То	1681	150.36
burns(60)	-	То	-	То	-	То	3721	1060.96
dekker(10)	739021	420.96	739021	927.133	2713870	865.98	21	0.04
dekker(100)	-	То	-	То	-	То	201	31.03
dekker(150)	-	То	-	То	-	То	301	225.01
dekker(200)	-	То	-	То	-	То	401	1064.42
peterson(5)	2782162	1432.44	-	То	-	То	31	0.04
peterson(50)	-	То	-	То	-	To	301	16.26
peterson(100)	-	То	-	То	-	То	601	385.10
peterson(120)	-	То	-	То	-	То	721	985.75
szymanski(4)	396583	198.87	396583	378.50	1444246	419.67	5335	5.15
szymanski(5)	-	То	-	То	-	То	19349	26.73
szymanski(7)	-	То	-	То	-	То	264209	674.53

ViEqui. Optimal Stateless Model Checking based on View-equivalence

Benchmarks with same classes under view-equivalence and classical equivalence

	ODPOR		RFS	RFSC		SMC	ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
pgsql(5,5)	781	0.70	781	1.15	19900	3.97	781	0.75
pgsql(6,7)	55987	68.57	55987	123.53	2292077	821.00	55987	186.18
pgsql(7,7)	137257	171.45	137257	316.25	-	То	137257	909.43
unverif(5,5)	14400	2.74	14400	5.01	68890	14.79	14400	227.78
unverif(5,10)	14400	2.98	14400	5.24	70890	16.12	14400	230.81
unverif(6,5)	518400	110.60	518400	206.56	2625944	818.55	_	То

Future Scope

- view-equivalence based SMC for *weak memory models*
- *coarsening* by considering the assert condition in the equivalence relation
- applicability for database *transactions*
- Richer constructs like *coarse grained synchronization*

Future Scope

• scalability

	ODPOR		rf	rfsc		RVF-SMC		ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time	
FreeBSD-abd-kbd	1	0.03	1	0.12	1	0.02	1	0.02	
FreeBSD-rdma-addr	1	0.02	1	0.12	1	0.01	1	0.02	
NetBSD-sysmon-power	4	0.03	26	0.15	6	0.02	6	0.04	
Solaris-space-map	2	0.03	2	0.12	1	0.02	1	0.01	

Future Scope

• scalability

	ODPOR		rf	rfsc		RVF-SMC		lqui
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
FreeBSD-abd-kbd	1	0.03	1	0.12	1	0.02	1	0.02
FreeBSD-rdma-addr	1	0.02	1	0.12	1	0.01	1	0.02
NetBSD-sysmon-power	4	0.03	26	0.15	6	0.02	6	0.04
Solaris-space-map	2	0.03	2	0.12	1	0.02	1	0.01
Safestack		oom		oom		То		То

oom: out of memory

ViEqui. Optimal Stateless Model Checking based on View-equivalence

ThankYou

ViEqui. Optimal Stateless Model Checking based on View-equivalence

RHPL 2023