ATVA 2022

Fence Synthesis under the C11
Memory Model

Sanjana Singh, Divyanjali Sharma and Subodh Sharma
(Indian Institute of Technology Delhi, India)
Ishita Jaju
(Uppsala University, Sweden)

rC)rdering with fences

* Order might be critical for correctness

[(x,0) I(y0)

T1 T2
R(y,1) R(x,1)
W(x,1) W(y1)
L J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

rC)rdering with fences

* Order might be critical for correctness

[(x,0) I(y0)

T1 T2

R~ R&x1)

w2 W)

.

Fence Synthesis under the C11 Memory Model Indian Institute of Technolo

Delhi

rC)rdering with fences

* Order might be critical for correctness
* Fences restore order

[(x,0) I(y0)

T1 T2

R(y,1) R(x,1)

! !

fence >< fence
W(x,1) W(y1)

. J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

 C/C++11 (C11) memory orders

No ordering restriction

/ Relaxed ordering

memory_order_seq_cst
* Sequentially-consistent

ordering

|

|

|

|

I

_ memory_order_relaxed I
Write]
memory_order_release :

. Release-acquire I

memory_order_acquire . !

ordering :

memory_order_acq_rel !

Read !
|

|

|

|

|

v

Restore sequential consistency

memory order specification to ensure performance and corvectness should not be left to humans.
Oberhauser et al., ASPLOS’21

. J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

" Fence synthesis for automated fix

\ 4

- Fensying

assert condition assert condition

. J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

C11 fences

 Tools for ordering restrictions.
 Support degrees of ordering guarantees

Release-acquire
é: memory_order_release ordering
- memory_order_acquire

E memory_order_acg_rel
memory_order_seq_cst | | Sequentially-consistent

ordering

.

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

i Existing fence synthesis techniques

* Imprecise (Existing techniques assume an axiomatic definition of ordering)

« Strong implicit ordering = miss C11 bugs + insufficient barriers
« Weak implicit ordering = unnecessarily strong barriers

 Reduced portability

.

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

i Existing fence synthesis techniques

* Imprecise (Existing techniques assume an axiomatic definition of ordering)

« Strong implicit ordering = miss C11 bugs + insufficient barriers
« Weak implicit ordering = unnecessarily strong barriers

 Reduced portability

Fence synthesis for C11
 Precisely detect C11 traces
 Synthesize portable C11 fences

.

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

(Fensying: Optimal C11 fence synthesis

4 N

Optimal fence synthesis

* Smallest set of fences
 \Weakest type of fences

K solution not uniquy

_ y,
Fence Synthesis under the C11 Memory Model | Indian Institute of Technology Delhi _

4 . .
Fensy1ng tec h NI q ue sb sequenced-before
rf reads-from
mo modification-order
Step 1 get the set of buggy traces
I(x,0) I(y,0)
T1 T2
R*(y,1) R*(x,1)
rf rf
sb sb
WF]X(X’l) WI‘/X(},’ 1)
\ buggy trace generator (BTG): CDSChecker, open source SMC [Norris and Demsky, OOPSLA’13])

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

mo

.

i Fensying technique

Step 2 generate intermediate trace

I(x,0) I(y0)

T1 T2
fence fence
) [} mo
R*(y,1) R¥(x,1)
! rf rf l
fence fence
' v
WI‘]X(X’ 1) WI‘/X(},’ 1)
v
fence fence

sb sequenced-before
rf reads-from
mo modification-order

Fence Synthesis under the C11 Memory Model

Indian Institute of Technology Delhi

(" .]
Fensy1ng tec h n | q u e sb sequenced-before

rf reads-from
mo modification-order

Step 2 generate intermediate trace
(additional ordering with fences) 1(x,0) 1(y,0)

T1 T2
fence fence
mo mo
R“(M 1) R“(X 1)

fence & \/ > fence

v
WFIX(X 1) WI‘/X(},’ 1)

fence fence)) _
maximum possible fence ordering

. J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

i Fensying technique

Step 2 generate intermediate trace
(additional ordering with fences) 1(x,0) 1(y,0)

T1 T2
fence fence
mo mo
not enough
RSC(y’]_) RSC(X]_) — @
ordering

cannot stop

fence & \/ > fence buggy trace
)
WFIX(X 1) WI‘/X(},’ 1)
fence fence)) _
maximum possible fence ordering
g J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

mo

.

i Fensying technique

Step 2 generate intermediate trace
(additional ordering with fences)

I(x,0) I(y0)

T1 T2
fence fence
mo
R“(M 1) R“(X 1)

fence & \/ > fence

v

WFIX(X 1) WI‘/X(},’ 1)

fence

fence

enough

ordering

l?

Fence Synthesis under the C11 Memory Model

Indian Institute of Technology Delhi

4 . . N
FGHSYlIlg te C h n | q u e C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
. . -hb is irreflexi
Step 3 detect violations of coherence MO S IITETEXIVE
mo; rf; hb is irreflexive
I(x,0) I(y,0) mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
T1 T2 to on sc events
fence fence
mo | | mo
R*(y,1) R*(x,1)
4, l
fence fence
4 v
WI‘]X(X’ 1) WI‘/X(},’ 1)
£ Z v
fence fence
\. y,

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

i Fensying technique

Step 3 detect violations of coherence
(weak-fensying)

I(x,0) I(y,0)

T1 T2
fence fence
y v
R¥(y,1) R*(x,1)
l hb |
fence < _ fence
hb
\L !
WI‘/X(X, 1) erX(}/, 1)
fence fence

.

I(x,0) I(y,0)

T1

fence

v

R*(y,1)
hb 1

fence

WI'/X(X’ 1)

A\ 4

fence

T2

fence

v
R%¢(x,1)
|hb
rf fence

1 hb
Wr(y,1)

l

fence

C11 coherence conditions:
hb is irreflexive

rf; hb is irreflexive

mo;hb is irreflexive

mo; rf; hb is irreflexive

mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
to on sc events

Johnson’s algorithm

for cycle detection
[Johnson, D.B, SICOMP’1975]

assuming acqg-rel ordered fences)

Fence Synthesis under the C11 Memory Model

Indian Institute of Technolo

Delhi

i Fensying technique

Step 3 detect violations of coherence
(strong-fensying)

T1

fence

v

. Z

WI‘]X(X’ 1)

\ 4

fence

.

I(x,0) I(y0)

T2

fence

!

R*(y,1) R*(x,1)
S Ol >< S Ol
fence <50 SO™ fence

v
WI‘/X(},’ 1)

2
fence

C11 coherence conditions:
hb is irreflexive

rf; hb is irreflexive

mo;hb is irreflexive

mo; rf; hb is irreflexive

mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
to on sc events

introduce sc-order (so)
cycle in so = violation of to

assuming seq-cst ordered fences >

Fence Synthesis under the C11 Memory Model

Indian Institute of Technolo

Delhi

‘ Fensying techni
Step 4 find the smallest set of fences
min-model of a SAT query
fencel A fence2 V fencel A fence2 V fence1
I(x,0) 1(y,0) I(x,0) I(y0) 1(x,0) 1(y,0)
T1 T2 T1 T2 T1 T2
fence fence fence fence fence fence
! ! | y v {
R¥(y,1) R*(x,1) R*(y,1) R*(x,1) R%(y,1) R*(x,1)
hb 1 S0, />< sol hb
fencey - fence, fencey 0 S0 fence, fence; f hb
| |
W"]X(X,l) erx(’1) W"']X(X,l) W"”X(y,l) WI'/X(X’I) erx(y’ 1)
fence fence fence fence fence fence
. Y,

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

4 ' ' 4 D
Fensying technique Optimal fence synthesis
« Smallest set of fences «
e Weakest type of fences
Step 4 find the smallest set of fences \ J
min-model of a SAT query
fencel A fence2 V fencel A fence2 V fence1
I(x,0) I(v.0) I(x,0) I(y,0) I(x,0) I(y,0)
T1 T2 T1 T2 T1 T2
fence fence fence fence fence fence
! ! ! { | {
R*(y,1) R%(x,1) R5(y,1) R*“(x,1) R*(y,1) R%(x,1)
hb v SO, />< sol hb
fencey - fence, fencey 0 S0 fence, fence; of hb
| l
W"]X(X,l) erx(’1) W"']X(X,l) W"”X(y,l) WI'/X(X’I) erx(y’ 1)
fence fence fence fence fence fence
g J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

4 . .
Fensying technique (Optimal fence synthesis

« Smallest set of fences «
e Weakest type of fences V
J

Step 5 find weakest order | "¢ \

I(x,0) I(y,0)

T1 T2
R*(y,1) R*(x,1)
hb|
fencerel f hb
| |
WI”]X(X’ 1) Wr]x(y, 1)
_ y,

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

.

Step 5 find weakest order

(Fensying technique

féncel

I(x,0) I(y,0)

T1 T2
R5(y,1) R*(x,1) .
hb
fencerel f hb
J
WI”]X(X’ 1) Wr]x(y, 1)

fixed program

Fence Synthesis under the C11 Memory Model

Indian Institute of Technolo

Delhi

(Fensying: Optimal C11 fence synthesis

e Smallest set of fences

Timeout

.

. Weakest type of fences NP-hard [Taheri et al., DISC’19]
900
600
= 300
0
\ | ;
v v
31.6% 68.4%

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13)

Fence Synthesis under the C11 Memory Model

Indian Institute of Technology Delhi

(fast-Fensying)

Fensying
 Sound
e Optimal
 Slow

e Doesn’t scale

Sound: stops a buggy trace that can be stopped.
Optimal: synthesizes precise fences.

.

(fFensying: near-Optimal C11 fence synthesis

fFensying

Sound
near-Optimal
Fast

Scales

Near-optimal: provably optimal for one trace, and empirically optimal for all traces in 99.5% tests

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

Fensying 1) fFensying

no

traces all buggy traces

WAL

Fensying

input program

. J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

Fensying 1) fFensying
]
o = o
races all buggy traces S one buggy trace races
WL | 1
Fensying nput program fFensying

I t
i}

------- fence ---——-- fence

fence fence

. J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

Fensying 1) fFensying

[Theorem: Fensying is sound. J [Theorem: fFensying is sound. J

[Theorem: Fensying is optimal.]

Sound: stops a buggy trace that can be stopped.
Optimal: synthesizes precise fences.

. J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

4 .
Experiments

tested on 1389 litmus tests of buggy C11 programs

.

Fensying and fFensying
stop buggy traces optimally

Fensying performs

Litmus tests source: Abdulla at al., OOPSLA’18)

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

E | t)
I Fensying [fFensying
900
600
3]
(M)
L
£
= 300
0
33 15 17 10 30 1 11 5 36 34 6 2 20 12 37 28 18 13 31 256 7 27 23 35 3 8 16 21 26 ~
Test ID
* tests that timeout for both Fensying and fFensying
_ Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’lS)
Fence Synthesis under the C11 Memory Model

E | t)
I Fensying [fFensying
900
600
3]
o speedup
()]
£ 300 67X
0
33 15 17 10 30 1 11 5 36 34 6 2 20 12 37 28 18 13 31 256 7 27 23 35 3 8 16 21 26 ~*
Test ID
* tests that timeout for both Fensying and fFensying
_ Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’lS)
Fence Synthesis under the C11 Memory Model

(- .)
Experiments

I Fensying [fFensying

900
- 600
& speedup
2 speedup
= 300 ~41% tests 67)(
>100x
0

33 15 17 10 30 1 M

O 36 34 6 2 20 12 37 28 18 13 31 25 7 27 23 35 3 8 16 21 26 ~

Test ID

* tests that timeout for both Fensying and fFensying
_ Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’lS)

Fence Synthesis under the C11 Memory Model

(- .)
Experiments

fFensying analysis

<2 traces for ~85% of tests

I Fensying [fFensying

900
- 600
& speedup
2 speedup
= 300 ~41% tests 67)(
>100x
0

33 15 17 10 30 1 M

O 36 34 6 2 20 12 37 28 18 13 31 25 7 27 23 35 3 8 16 21 26 ~

Test ID

* tests that timeout for both Fensying and fFensying
_ Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’lS)

Fence Synthesis under the C11 Memory Model

4 .
Experiments

non-optimal (fFensying)

0.005% tests

extra fences (fFensying)

1.57 average

I Fensying [fFensying

900
- 600
& speedup
2 speedup
= 300 ~41% tests 67)(
>100x
0

33 16 17 10 30 1 11 5 36 34 6 2 20 12 37 28 18 13 31 25 7 27 23 35 3 8 16 21 26 ~

Test ID

* tests that timeout for both Fensying and fFensying
_ Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’lS)

Fence Synthesis under the C11 Memory Model

)

Ime

IS T

Experiments (breakup of fFensying analys

s

[Time-BTG [Time-fFensying

1000

750

500

250

o

621sal
vzisal
isal

ze1sal
6LIsal
plisal
gelsal
zzisal
B1sal

9zisal
LZ1sal
9l1sal
gisal

g1sal

gelsal
gzisal
L2158l
2sal

gzisal
Le1sal
gl1sal
glisal
gzisal
€158l
peIsal
zsal
0zisal
ai1sal

91sal

9glsal
lsal

Gisal

WRCETE
L11sal
Glisal
oglsal
ge1sal
oLisal

Test ID

Fence Synthesis under the C11 Memory Model

fFuture Directions

{ Improve BTG time]

.

Improve fence
synthesis time

|

Fence Synthesis under the C11 Memory Model

Indian Institute of Technolo

Delhi

fFuture Directions

[Improve BTG time]

|

Improve fence
synthesis time

|

Intermediate trace

generation

\ 4

.

\ 4

Cycle detection Min-model finding

O(|€|+E).(C+1)

&: set of events of buggy trace
E: #pairs of events in €, in O(|€|?)
C: #tcycles of buggy trace, in O(|€ |z

Fence Synthesis under the C11 Memory Model

Indian Institute of Technology Delhi

(Future Directions

{ Improve BTG time] { Improve_ fe_nce]
synthesis time

Intermediate trace
generation

A\ 4

Cycle detection

A\ 4

Min-model finding

1(x,0) 1(»0)

T1 T2

fence fence

¢ |
R¥(y,1) Rse(x,1)

l rf rf l
fence fence
WI‘[X(X, 1) WI‘]X(y, 1)
l |
fence fence
N J

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

.

" (f)Fensying tool

open source
https://github.com/singhsanjana/fensying

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi

https://github.com/singhsanjana/fensying

.

Thank You

Questions?

Looking for post-doc positions

J

Fence Synthesis under the C11 Memory Model

Indian Institute of Technolo

Delhi

.

\
Thank You
Questions?
Looking for post-doc positions
J

Fence Synthesis under the C11 Memory Model

Indian Institute of Technolo

Delhi

"We still do not have an acceptable way to make our informal (since C++14) prohibition of out-of-thin-air results precise.
The primary practical effect of that is that formal verification of C++ programs using relaxed atomics remains unfeasible.

The paper [Lahav et al. PLDI’17] suggests a solution similar to
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2013/n3710.html .
We continue to ignore the problem here, but try to stay out of the way of such a solution."

source: https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0668r5.html
(Bullet 4. under 'Revising the C++ memory model')

(on
Q
(@)
~

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r5.html

Fensying technique

inability to create a total-order

Step 3 detect violations of coherence

(strong-fensying) I(x,0) I(y0)
. T1 T2
introduce sc-order (so)
cycle in so = to cannot be formed fence fence
y |

R¥(y,1) R¥(x,1)
ex’ e —Lses | F F5° —52 > F5° so| >< S0}
f%()SD \ k fence <59 SO™ fence
es° [fse er — s e [

€] —————3 €9

\L \ 4

(soee) (soef) (sofe) (soff) WI‘IX(X’]_) WI‘]X(},' 1)
R=—=uU—=roy=ifusi) l
fence fence

assuming seq-cst ordered fences

(on
Q
(@)
~

Fence synthesis vs event strengthening

C11 fences do not restore sequential consistency

-~

Initially, © =0, y =0

Vaun

R*(y,0) R*(

We(z,1)>R*(x, 1) | W*(y,1)>R>*(y,1)

z,0)

Initially, x =0,y =0

sc sc sc
IE;Kll FQI FSI

sc
F;Ll

v v \ \
erx(ﬂff, 1) er]((:r! 1) erx(y, 1) erx((y} 1)
v v v '

Fi2 F3 —— F3s Fis
) v \
erx(y’ 0) erx(:B, 0)
v \

iriw-invalid

iriw-valid

)
>
o

Fence synthesis vs event strengthening

Interpreting barriers from memory orders is not precise

Initially, x =0, y =0 Initially, x =0, y =0
W= (x, 1) W=c(y, 1) W= (x, 1) W (y, 1)
| > n | S
R*(y,0) R*¢(z,0) R™™(y,0) R™(x,0)

—

g

|('D
>
o

Fence synthesis vs event strengthening

Interpreting barriers from memory orders is not precise

Inztza,ﬂy, T = D, Yy = 0 Ingtzaffyq T = [} Y = 0
A/ ¢ (I-j 1) 1}/8¢ (y 1) Hfrrlx(l', 1) H’;rlx(y? 1)
| > | w |
R*(y,0) R*(x,0) R (y,0) R™(2,0)
Initially, r =0,y =0 Initially, x =0,y =0
DMB ish DMB ish
str(z, 1) str(y, 1) str(z,1) str(y, 1)
DMB ish DMB ish DMB ish DMB ish
ld(y) ld(x) ld(y) ld(x)
DMB ish DMB ish
barriers on ARM barriers on ARM

=

g

|('D
>
o

Fence synthesis vs event strengthening

Interpreting barriers from memory orders is not precise

W= (z, 1)

R*(y,0)

Initially, x =0, y =0

g

W=(y,1)

R*(z,0)

Initially, x =0,y =0

W==(z, 1) W= (y, 1)
Fi° F5°
F__\-__-____/__,./
er}c(y? {]) 11_-{1'1}{(:‘.:1J U)

Initially, x =0,y =10

DMB ish DMB ish
str(z, 1) str(y, 1)
DMB ish DMB ish
ld(y) ld(x)
DMB ish DMB ish

Initially, x =0,y =0

hwsync hwsync
str(xz,1) str(y, 1)
hwsync hwsync
ld(y) ld(z)
isync+ isync+

Initially, © =0, y = 0

str(z,1) str(y, 1)
DMB ish DMB ish
ld(y) ld(z)

Initially, z =0, y =0

str(z, 1) str(y, 1)
hwsync hwsync
Ld(y) ld(x)

barriers on ARM

barriers on power

top

i

€

n

d

barriers on ARM

barriers on power

Veritying optimality

 m— | Optimality |)
Fence —— | verifier T >
fence fence i
—_— — no bugs found
fix not optimal

fixed program (weaken 1 fence

(post fence synthesis)
bug(s) found L]

optimal fix

remove 1 fence

Reason (<2 traces for ~85% of tests)

— o — o
o] o]
— © — @
® ®
o) o)

buggy trace 1 buggy trace 2

(on
Q
(@]
~

—— affect assert condition
does not affect assert condition

