
Fence Synthesis under the C11
Memory Model

Sanjana Singh, Divyanjali Sharma and Subodh Sharma

(Indian Institute of Technology Delhi, India)

Ishita Jaju

(Uppsala University, Sweden)

ATVA 2022

Ordering with fences

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

R(y,1)

T1

R(x,1)

T2

W(x,1) W(y,1)

I(x,0) I(y,0)

• Order might be critical for correctness

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

R(y,1)

T1

R(x,1)

T2

W(x,1) W(y,1)

I(x,0) I(y,0)

• Order might be critical for correctness

Ordering with fences

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

R(y,1)

T1

R(x,1)

T2

W(x,1) W(y,1)

I(x,0) I(y,0)

• Order might be critical for correctness
• Fences restore order

fence fence

Ordering with fences

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

C/C++11 (C11) memory orders

Relaxed ordering

Release-acquire
ordering

Sequentially-consistent
ordering

Write

Read

memory_order_relaxed

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

No ordering restriction

Restore sequential consistency

memory order specification to ensure performance and correctness should not be left to humans.
Oberhauser et al., ASPLOS’21

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fence synthesis for automated fix

assert condition

------- fence -------

assert condition

Fensying

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

• Tools for ordering restrictions.
• Support degrees of ordering guarantees

C11 fences

Release-acquire
ordering

Sequentially-consistent
ordering

Fence

memory_order_release

memory_order_acquire

memory_order_acq_rel

memory_order_seq_cst

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

• Imprecise (Existing techniques assume an axiomatic definition of ordering)

• Strong implicit ordering ⇒ miss C11 bugs + insufficient barriers

• Weak implicit ordering ⇒ unnecessarily strong barriers

• Reduced portability

Existing fence synthesis techniques

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Existing fence synthesis techniques

Fence synthesis for C11
• Precisely detect C11 traces
• Synthesize portable C11 fences

• Imprecise (Existing techniques assume an axiomatic definition of ordering)

• Strong implicit ordering ⇒ miss C11 bugs + insufficient barriers

• Weak implicit ordering ⇒ unnecessarily strong barriers

• Reduced portability

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Optimal fence synthesis

• Smallest set of fences
• Weakest type of fences

Fensying: Optimal C11 fence synthesis

solution not unique

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

get the set of buggy traces

mo mo

rf rf

sbsb

buggy trace generator (BTG): CDSChecker, open source SMC [Norris and Demsky, OOPSLA’13]

Step 1

sb sequenced-before
rf reads-from
mo modification-order

BTG

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence

sb sequenced-before
rf reads-from
mo modification-order

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence
maximum possible fence ordering

(additional ordering with fences)

sb sequenced-before
rf reads-from
mo modification-order

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence
maximum possible fence ordering

(additional ordering with fences)

not enough

ordering

cannot stop
buggy trace

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

generate intermediate trace

mo mo

rf rf

sbsb

Step 2

fence

fence

fence

fence

fence

fence

(additional ordering with fences)

enough

ordering

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

detect violations of coherence

mo mo

sbsb

Step 3

fence

fence

fence

fence

fence

fence

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo;hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
to on sc events

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

detect violations of coherence

sbsb

Step 3

fence

fence

fence

fence

fence

fence

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo;hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
to on sc events

(weak-fensying)

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rf sbsb

fence

fence

fence

fence

fence

fence

hb

hb

hb hb

hb

assuming acq-rel ordered fences

Johnson’s algorithm
for cycle detection

[Johnson, D.B, SICOMP’1975]

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

detect violations of coherenceStep 3

C11 coherence conditions:
hb is irreflexive
rf; hb is irreflexive
mo;hb is irreflexive
mo; rf; hb is irreflexive
mo; hb; rfinv is irreflexive
mo; rf; hb; rfinv is irreflexive
to on sc events

(strong-fensying)

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

so

sbsb

fence

fence

fence

fence

fence

fence

assuming seq-cst ordered fences

introduce sc-order (so)
cycle in so ⇒ violation of to

so
so so

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query

1 1 122

1 2^ 1 2^ 1V V

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

find the smallest set of fencesStep 4
min-model of a SAT query

1 1 122

1 2^ 1 2^ 1V V

Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

find weakest orderStep 5 1

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsbfence

hb

hb
rel

Optimal fence synthesis
• Smallest set of fences
• Weakest type of fences

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying technique

find weakest orderStep 5 1

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

rfsbfence

hb

hb
rel

------- fence -------

fixed program

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

• Smallest set of fences
• Weakest type of fences

Fensying: Optimal C11 fence synthesis

NP-hard [Taheri et al., DISC’19]

31.6% 68.4%

Timeout

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

fFensying: near-Optimal C11 fence synthesis

Fensying

• Sound
• Optimal
• Slow
• Doesn’t scale

fFensying

• Sound
• near-Optimal
• Fast
• Scales

Sound: stops a buggy trace that can be stopped.
Optimal: synthesizes precise fences.
Near-optimal: provably optimal for one trace, and empirically optimal for all traces in 99.5% tests

(fast-Fensying)

input program

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying vs fFensying

Fensying

no
buggy
traces all buggy traces

BTG

input program

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying vs fFensying

fFensyingFensying

no
buggy
traces

no
buggy
tracesall buggy traces

BTG
one buggy trace

BTG

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Fensying vs fFensying

Theorem: fFensying is sound.

Theorem: Fensying is optimal.

Theorem: Fensying is sound.

Sound: stops a buggy trace that can be stopped.
Optimal: synthesizes precise fences.

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Experiments

tested on 1389 litmus tests of buggy C11 programs

Fensying and fFensying

stop buggy traces
Fensying performs
optimally

Litmus tests source: Abdulla at al., OOPSLA’18

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

* tests that timeout for both Fensying and fFensying

Experiments

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Experiments

speedup

67x

* tests that timeout for both Fensying and fFensying

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Experiments

speedup

67xspeedup
~41% tests

>100x

* tests that timeout for both Fensying and fFensying

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Experiments

speedup

67xspeedup
~41% tests

>100x

fFensying analysis

≤2 traces for ∼85% of tests

* tests that timeout for both Fensying and fFensying

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Experiments

speedup

67xspeedup
~41% tests

>100x

non-optimal (fFensying)

0.005% tests

extra fences (fFensying)

1.57 average

* tests that timeout for both Fensying and fFensying

Benchmarks source: Singh et al., TASE’21, Abdulla at al., PLDI’19, Abdulla at al., OOPSLA’18, Norris & Demsky, OOPSLA’13

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Experiments (breakup of fFensying analysis time)

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Future Directions

Improve BTG time
Improve fence
synthesis time

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Future Directions

Intermediate trace
generation

Cycle detection Min-model finding

Improve BTG time
Improve fence
synthesis time

O(|ε|+E).(C+1)

E: #pairs of events in ε, in O(|ε|2)
ε: set of events of buggy trace

C: #cycles of buggy trace, in O(|ε|!)

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Future Directions

Intermediate trace
generation

Cycle detection Min-model finding

Improve BTG time
Improve fence
synthesis time

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

(f)Fensying tool

open source
https://github.com/singhsanjana/fensying

https://github.com/singhsanjana/fensying

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Thank You

Questions?

Looking for post-doc positions

Fence Synthesis under the C11 Memory Model Indian Institute of Technology Delhi ATVA 2022

Thank You

Questions?

Looking for post-doc positions

introduction technique experiments future work

"We still do not have an acceptable way to make our informal (since C++14) prohibition of out-of-thin-air results precise.
The primary practical effect of that is that formal verification of C++ programs using relaxed atomics remains unfeasible.

The paper [Lahav et al. PLDI’17] suggests a solution similar to
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html .
We continue to ignore the problem here, but try to stay out of the way of such a solution."

source: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r5.html
(Bullet 4. under 'Revising the C++ memory model')

back

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r5.html

Fensying technique

detect violations of coherenceStep 3
(strong-fensying)

Rsc(y,1)

T1

Rsc(x,1)

T2

Wrlx(x,1) Wrlx(y,1)

I(x,0) I(y,0)

so

sbsb

fence

fence

fence

fence

fence

fence

assuming seq-cst ordered fences

introduce sc-order (so)
cycle in so ⇒ to cannot be formed

so
so so

inability to create a total-order

back

C11 fences do not restore sequential consistency

Fence synthesis vs event strengthening

top end

Interpreting barriers from memory orders is not precise

Fence synthesis vs event strengthening

top end

Interpreting barriers from memory orders is not precise

barriers on ARM barriers on ARMbarriers on power barriers on power

Fence synthesis vs event strengthening

top end

Interpreting barriers from memory orders is not precise

barriers on ARM barriers on ARMbarriers on power barriers on power

Fence synthesis vs event strengthening

top end

Verifying optimality

BTG
Optimality

verifier

fixed program
(post fence synthesis)

weaken 1 fence

remove 1 fence

no bugs found
fix not optimal

bug(s) found
optimal fix

back

Reason (≤2 traces for ∼85% of tests)

assert fail

1

a

2

b

c

assert fail

2

a

1

b

c

affect assert condition
does not affect assert condition

buggy trace 1 buggy trace 2

back

