CSL705/CS355N: Theory of Computation

Tutorial sheet: Strings, Numbers and Encodings

- 1. The decimal representation of natural numbers uses the alphabet $D_0 = \{0, 1, ..., 9\}$ to represent the natural numbers as elements of D_0^* . Each digit symbol also has an appropriate face value and a place value in the string. An alternative representation uses instead the alphabet $D_T = (D_0 \{0\}) \cup \{T\}$ where the symbol T has a place value of 10 and the other digits have the same place value as usual.
 - (a) Prove that there is a bijection between D_T^* and \mathbb{N} . Hence every string represents a unique natural number and every natural number has a unique representation in D_T^* .
 - (b) Design an algorithm to convert from the representation D_0^* to D_T^* .
 - (c) Design algorithms (without converting between representations D_T^* and D_0^*) for addition, subtraction, multiplication, quotient and remainder operations for positive integers represented in D_T^* .
- 2. Let D be a set. An injective function $\alpha: D \to \mathbb{N}$ is said to be a **natural encoding** of D in \mathbb{N} and for each $d \in D$, $\alpha(d)$ is called a **natural representation** of d. The inverse function α^{-1} is called a **natural decoding**. Let $f: D \to D$ be a total function. Then $f^* = \alpha \circ f \circ \alpha^{-1}$ is called a **natural coding** of f.
 - (a) Define $z2n: \mathbb{Z} \to \mathbb{N}$ that codes the set \mathbb{Z} of all integers.
 - (b) Define functions that are natural codings of the operations of addition, subtraction and multiplication on the integers.
 - (c) Define the quotient and remainder functions on integers.
- 3. Let Σ be a finite alphabet. Find a bijection between Σ^* and the set \mathbb{N} of natural numbers and prove that it is indeed a bijection.
- 4. Let $\mathcal{G}(\Lambda)$ be the set of directed finite graphs with labels drawn from a nonempty finite set Λ .
 - (a) Define a string representation of the graphs in $\mathcal{G}(\Lambda)$.
 - (b) What are the representations of various trivial graphs such as the empty graph, a graph with a single node, a graph with a single node and a self-loop etc.
 - (c) Answer the following questions about your representation and prove your answers.
 - i. Is your representation injective? If not then your representation is not an encoding and you need to try a different representation.
 - ii. Is your representation bijective?
 - iii. If your representation is not surjective, what can you say about the function f^* for any given total function f on $\mathcal{G}(\Lambda)$.
 - (d) Without converting between graphs and their representations, define the operations of
 - i. adding a node to a graph G
 - ii. adding an edge to G
 - iii. deleting a node from G
 - iv. deleting an edge from G