
1. The study of the fundamental limits to computation

↑

assuming unbounded but finite consumpution of resources

— time , space and processing power

2. Various models of computation

church − Turing thesis

Turing machines recursive functions

Post systemRegister machinesλ − calculus

3. Abstraction : Generative model vs machine models

regular
languages

context free
languages

context−
sensitive
languages

unrestricted
languages

&
regular expressions

&

& & &

finite state automata
pushdown
automata

linear bounded
automata

turing
machines

STRING & SETS

Decision problems vs functions

A decision problem is a boolean-valued function. Set theorectically a decision problem is specified by a
set A of all possible inputs and the subset B ⊆ A for which the function is true.

Strings. The set of all possible inputs to a decision problem may be encoded as the set of finite-length
strings over some fixed finite alphabet. All data types – numbers , graphs , trees , programs etc — can
all be encoded naturally as strings. So by using the string data type we need to consider only one data
type with a few basic operations.

Definition & Notations

• An alphabet is any finite set .(suitably chosen).

• The elements of an alphabet are called letters .

• A string over an alphabet Σ is any finite-length sequence of letters from Σ typically u, v, w, x, y, z
are string over Σ. |x| denotes the length of string x.

• There is a unique 0-length string over Σ called the null string or the empty string denoted by ε.
|ε| = 0.

Further notations for any a ∈ Σ

1

• a0 df
= ε an+1 df

= aan = ana

• Σ⋆ is the set of all (finite - length) string over Σ.

• If Σ = φ then Σ⋆ = {ε} by convention.If Σ 6== φ then Σ⋆ is an infinite set of strings.

Operations on strings over Σ

• For x, y ∈ Σ⋆ , x.y is the string obtained by juxtaposing y to the right of x. This is the operations
of (con)catenation. Often the ′.′ is omitted

• (Con)catenation is

(i) associative : x(y z) = (x y)z

(ii) ε is the identity : εx = xε = x.

(iii) |xy| = |x| + |y|. for x = am and y = an we have xy = aman = am+n. for all m, n ≥ 0.

• 〈 Σ⋆, . , ε 〉 is a monoid.

• For any x ∈ Σ⋆ ,

x0 df
= ε xn+1 df

= xn . x = x.xn

• For a ∈ Σ and a ∈ Σ⋆ ,

#a(x) is the number of occurrences of ′a′ in x.

The prefix ordering and prefixes

Definition 1. x ∈ Σ⋆ is a prefix of y ∈ Σ⋆ if there exists a string u ∈ Σ⋆ such that x.u = y. x 4 y
denotes that x is a prefix of y.

Facts about prefixes

• ε 4 x for every x ∈ Σ⋆

• x 4 x for every x ∈ Σ⋆

• x 4 y and y 4 x ⇒ x = y for all x, y ∈ Σ⋆

• x 4 y and y 4 z ⇒ x 4 z

• 4 is a partial order on Σ⋆.

Definition 2. x is a proper prefix of y (denoted x ≺ y) if x 4 y and x 6= y.

• x ≺ y iff ∃u 6= ε : x.u = y.

Problems on strings

1. Consider the set T of trees whose nodes are labelled by letters ′a′ to ′z′ such that more than one
node in a tree may have the same letter labelling it. In particular , consider the following tree. It is

necessary to represent this tree as a string. Now answer the following.

(a) What is Σ ? Give an intuitive expalanation of the letters in the alphabet Σ that you will use
to represent trees such as the above.

2

church − Turing thesis

Turing machines recursive functions

Post systemRegister machinesλ − calculus

(b) What is the representation of the above tree as a string in Σ⋆ ?

(c) Can you give reasons or show that

(i) Every tree in T has a unique string representation i.e no two distinct trees have the same string
representation.

(ii) There are strings in Σ⋆ which do not represent a tree in T .

2. A string x ∈ Σ⋆ is called a substring of another string y ∈ Σ⋆ if for some u, v ∈ Σ⋆ , y = u.x.v

(a) Let x ≤ y if x is a substring of y. Prove that ≤ is a partial order on Σ⋆.

(b) Show that x 4 y implies x ≤ y.

3. Let L be a set of labels on nodes of a graph. Give a scheme to represent both directed and undi-
rected graphs as strings. Is it possible for the same graph to have different strings representations
?

4. If a structure 〈A , . 〉 with an associative binary product operations . and closed under . has a left
identity and a right identity then it has a unique element which is both the left identity and the
left right identity.

Sets of string on
∑

— The structure 〈 2Σ⋆

,∪,∩, • φ, Σ⋆, {ε} 〉

• A, B, C denote subsets of Σ⋆ and are called languages.

• Besides the usual set operations like ∪,∩, \ and ∼ (complementation) we may extend the operation
of concatenation to sets of strings

• A.B = {x.y | x ∈ A, y ∈ B}

• A0 df
= {ε} An+1 df

= An.A = A.An

↑

This ensures that Am.An = Am+n

A⋆ df
=

⋃

n≥0

An

Clearly since A0 ⊆ A⋆ we have ε ∈ A⋆ always.

A+ df
=

⋃
An = A.A⋆

3

Note : For any a ∈
∑

, a⋆ and a+ will be used as short hand for {a}⋆ and {a}+ respectively.

Similarly for any x ∈ Σ⋆ x⋆ and x+

Properties of set operations on languages

• ∪,∩, • are all associative operations on languages.

• ∪,∩ are also commutative (through • is not)

• φ is the identity for ∪

Σ⋆ is the identity for ∩

{ε} is the identity for •

Note : φ is the empty language
over

∑
whereas {ε} the (nonempty)

language containing the empty string

• φ is the zero of •

i.e i φ.A = φ = A.φ

• ∪ and ∩ distribute over each other

• Catenation distributes over union

A.(B ∪ C) = (A.B) ∪ (A.C)

(A ∪ B)C = (A.C) ∪ (B.C)

• For any indexed family (possible infinite) concatenation distrubutes over arbitrary unions.

A.(
⋃

j∈J

Bj) =
⋃

j∈J

A.Bj

(
⋃

i∈I

Ai).B =
⋃

i∈I

Ai.B

• The de Morgan laws hold

∼ (A ∪ B) =∼ A∩ ∼ B

∼ (A ∩ B) =∼ A∪ ∼ B

• ⋆ satisfies the following properties

A⋆.A⋆ = A⋆

(A⋆)⋆ = A⋆

A⋆ = {ε} ∪ A.A⋆ = {ε} ∪ A+

φ⋆ = {ε}

• Why catenation does not distribute over ∩

Consider languages A, B, C and let

x ≺ x′ for x, x′ ∈ A

and let y ∈ B − C and z ∈ C − B

such that u = x.y = x′.z

Then clearly u ∈ A.B ∩ A.C

whereas u 6∈ A.(B ∩ C).

4

FINITE AUTOMATA & REGULAR SETS

Introduction

Consider a basic model of computation which we know machines could perform even the early years of
the 20th century

• vending machines which “accepted ” sequence of coins of appropriate

• looms which could “read ” patterns from a finite paper tape and could replicate the patterns.

• even more recently , tape recorders and gramophone players which could “read” a finite input and
convert them into sounds.

• even more recently programs that can “read” an input file containing a finite sequence of characters
and take appropriate action.

All the above are concrete examples or instances of the following abstraction.

• a finite sequence of discrete inputs

• that is “read” from left to right and

• accepted by a machine with a finite number of possible states.

Diagrammatically
finite length
input sequence

Finite state

control

More abstractly we have the “finite automation” abstraction which is a structure

Definition 3. M = 〈 Q, Σ, δ, q0, F 〉 a finite-state

automation is a structure where

•
∑

is a finite alphabet

• Q is a finite set of “states” of the machine

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of final states

• δ : Q × Σ −→ Q is the transition function which specifies for a given state and input symbol what
the next state is

5

Simple examples

1. Consider a vending machine which accepts only 5-rupee coins and delivers coffee for each such coin.
We forget about the coffee and specify it as

Q
5

q0

δ

q0

Σ

Σ = {5}

Q = {q0}

F = {q0}

δ(q0, 5) = q0

2. Consider a machine that does not accept any other coins (say Re1 and Re2).

Σ = {1, 2, 5}

Q = {q0, q1}

F = {q0}

1 2 5δ
Q

q0

q1

q1 q1 q0

q1 q1 q1

Σ

3. Consider a machine that accepts a nonempty sequence of Re1 coins followed by a nonempty sequence
of Re2 coins but does not accept “anything else”

We abstract out the “anything else” by a new symbol ⊥. So we then have

δ
1 2 ⊥

q1 q⊥ q⊥

q⊥

q⊥q⊥q⊥

q⊥q⊥

q1 q2

q2

Q

q2

q⊥

q1

q0

Σ

Σ = {1, 2,⊥}

Q = {q0, q1, q2, q⊥}

F = {q2}

6

Automata may also be represented graphically

initial state

final state

1

q0

q⊥

1,⊥

⊥

⊥

2

q1

q2

1,2,⊥

2

1

2

4. Consider a machine that only accepts any sequence conisting of at least 3 one-rupee coins and
assume Σ = {1, 2, 5}

q0 q11
q12 q13

1 1 1

2,5 1,2,52,5 2,5

5. Consider a machine that accepts a sequence of coins in which there is at least one sub-sequence of
there consecutive 1s.

2,5
1,2,5

q0 q11
q12 q13

2,5

1

2,5

1 1

6. Consider a machine that accepts a sequence of coins in which there is exactly one sub-sequence of
three consecutive 1s

7

1

2,5

1 1

1

11

2,5 2,5

2,5
2,5

2,5

q0 q11

q22

q13

q23
q21

q12

7. Consider a vending machine which accepts exactly coins of denominations {1, 2, 3} which add
up to 4.

Clearly Σ = {1, 2, 5} and the language accepted by the machine is {14, 121, 112, 211, 22} let the states
of the machine by numbered/named 0, 1, 2, 3, 4,⊥ where ⊥ stands for any number > 4

⊥

1,2,5

3

4

2,5

1,2
,5

1

1

1

1

2

2

5

2

1

2

The number on each state indicates the total value of the sequence of coins input so far.

Given a machine M = 〈 Q, Σ, δ, q0, F 〉 define δ⋆ : Q × Σ⋆ −→ Q as the function defined by induction on
the length of the input string

δ⋆(q, ε) = q
δ⋆(q, xa) = δ(δ⋆(q, x), a)

δ⋆ is the multi-step version of δ.

Definition 4. An automation accepts a string x ∈ Σ⋆ if δ⋆(q0, x) ∈ F and rejects it otherwise. The
language accepted by it is L(M) = {x ∈ Σ⋆ | δ⋆(q0, x) ∈ F}.

Definition 5. A ⊆ Σ⋆ is regular if A = L(M) for some DFA M .

FACTS

1. φ and {ε} are regular.

2. Σ⋆ is also regular.

8

3. The various languages we have defined through the various automata in the preeding examples are
all regular.

4. If L ⊆ Σ⋆ is regular and Σ′ ⊇ Σ, then L ⊆ Σ′⋆ is still regular.

Number-theoretic examples. Consider an automation that accepts all bit strings that are multiples
of 2. Assume ε represents the number 0.

Clearly here Σ = {0, 1} and the automation accepts the language {ε} ∪ {x 0 | x ∈ Σ⋆}

Q

δ

1202 02

0212 12

10
1

0
0

Σ

02 12

Consider a machine that accepts only multiples of 3. In designing this automation we consider the fol-
lowing. For any x ∈ {0, 1}⋆ let (x)2 denote the integer it represents. Then we have

(ε)2 = 0 (0)2 = 0 (1)2 = 1.

and for any x ∈ Σ⋆ and b ∈ Σ

(x b)2 = 2(x)2 + b

The states of the automation are numbered i ∈ {0, 1, 2} and satisfy the preoperty that for any x ∈ Σ⋆

the automation is in state (x)2 mod 3 after consuming x. Then inductively the transition function

δ : {0, 1, 2} × {0, 1} −→ {0, 1, 2} satisfies the property that

if q = (x)2 mod 3 then δ(q, b) = (xb)2 mod 3
= (2(x)2 + b) mod 3
= (2[(x)2 mod 3] + b) mod 3
= (2q + b) mod 3.

Clearly q0 = 0 and F = {0}.

which gives us the following automation

03

0

1
23

13

1

0

0

1

δ 10
Q

03

13

23

03

23

13

13

03

23

Σ

Question ? How does one design a modulo 6 counter ? there are two possible answers to this question.

9

1. Follow the usual steps and design a 6-state automation.

2. Do a “product construction” to create the 6-state automation from the modulo 2 and modulo 3
counters.

The Product Construction

Let
M1 = 〈 Q1, Σ, δ1, q1, F1 〉

and M2 = 〈 Q1, Σ, δ2, q2, F2 〉
be automation defined on a comman alphabet Σ. Their product M3 = M1 × M2 = 〈 Q3, Σ, δ3, q3, F3 〉 is
the automation defined by

Q3 = Q1 × Q2 = {q1
′, q2

′ | q1
′ ∈ Q1, q2

′ ∈ Q2}
F3 = F1 × F2

q3 = (q1, q2)
δ3 : Q3 × Σ −→ Q3 such that
δ((q1

′, q2
′), a) = (δ1(q1

′, a), δ2(q2
′, a))

Example . The product of the automation for the modulo 2 counter and that of the modulo 3 counter
yield an automation that accepts only bit strings that are binary representations of multiples of 6.

Lemma 1. If M3 = M1 × M2 then
δ⋆
3((q1

′, q2
′), ε) = (q1

′, q2
′)

δ⋆
3((q1

′, q2
′), x a) = δ3(δ

⋆
3((q1

′, q2
′), x), a)

Theorem 1. L(M3) = L(M1) ∩ L(M2)

Proof. for all x ∈ Σ⋆

x ∈ L(M3)
⇔ δ⋆

3((q1, q2), x) ∈ F3

⇔ (δ⋆
1(q1, x), (δ⋆

2(q2, x)) ∈ F1 × F2

⇔ (δ⋆
1(q1, x) ∈ F1 ∧ (δ⋆

2(q2, x)) ∈ F2

⇔ x ∈ L(M1) ∧ x ∈ L(M2)
⇔ x ∈ L(M1) ∩ L(M2)

10

Example : A modulo 6 counter .
A direct construction yields.

0 1

0

0
0

0
0

0

1

1
1

1
1

1

06 26

16

36

46

56

06

16

26

36

46

56 46

26

06

46

26

06 16

36

56

16

36

56

Q

δ
Σ

A product construction yields.

0

0
0

0
0

0

1

1
1

1
1

1

0203

1213

0223

1203 1213

1223

1203

12130203

0223

0203

0213

δ

Q
Σ 0 1

1223 0213 1223

0223 12030213

0203

1213

0223

0213

12231203

The following bijection holds between the two automata states

i6((i
1−1
↔ mod 2)2 , (i mod 3)3)

Closure Properties of Regular languages

Let R = {A ⊆ Σ⋆ | L is regular}.

Theorem 2. 1. R is closed under set intersection.

— follows from the previous theorem

2. R is closed under complementation

i.e A ∈ R ⇒∼ A ∈ R

11

Proof. If A ∈ R , then for some DFAM A = L(M). Consider the complement DFA
∼

M = 〈 Q, Σ, δ, q0, Q − F 〉

in which every non-accepting state becomes final and vice-versa. Clearly L(
∼

M) = Σ⋆ − L(M) =∼ L(M) =∼ A

3. R is closed under union

Proof. Since R is closed under both ∩ and ∼ it follows that for any A, B ∈ R A ∪ B =∼ (∼ A∩ ∼ B)
and hence A ∪ B is regular.

4. R is closed under concatenation

Proof. Let A, B ∈ R be accepted respectively by automata

M = 〈 P, Σ, p0, δA, F 〉

N = 〈 Q, Σ, q0, δB, G 〉

Tutorial 2 (Warm up)

0) Prove that if Σ 6= φ is finite Σ⋆ is countable.
Answer : Let Σ = {a1, . . . , an}. Consider the mapping (1-1 and onto) of string from Σ⋆ to numbers in
base n (without 0) such that ai denotes the digit i in base n. The clearly with ε being mapped to 0
we have that the string in Σ⋆ uniquely represent numbers in base n. Hence since N is countable and

Σ⋆ 1−1
−−−→
onto

N we have that Σ⋆ is countably infinite.

Tutorial 2

1. Given Σ is there a language that is not regular ?

Answer : Consider Σ = {a, b} then the following languages are not regular

a) {anbn | n > 0}

b) {x ∈ Σ⋆ | ∀u 4 x : #a(u) ≥ #b(u) ∧

#a(x) = #b(x)}

c) If Σ = 0, 1 and P is the set of strings (without leading zeroes) representing primes then P is not
regular

P = {x ∈ 1.Σ⋆ | (x)2 is a prime}.

2. Given a regular language A ⊆ Σ⋆ and two machines M1 and M2 such that L (M1) = L (M2) = A.
Then is there an isomorphism between them ?

Answer : Not necessary as we shall in the minimization of DFAs. But a concrete example is the
following. Consider a different machine to recognize multiples of 2.

Clearly this machine has 3 states and is not isomorphic to the machine

12

0

0

1

0 1

10

0

1

0 1

10

3. Prove without using the product construction or any of its consequences that every finite language
on Σ is regular.

Answer : Consider a finite alphabet Σ = {a1, . . . , am} if n = 0 then clearly every language on Σ is
φ since Σ = φ

1) Even if Σ 6= φ the language A could be empty. The empty language is accepted by any automation
which has no final states

Σ

A = φ q0

If A is not empty then consider the following case A = {ε}. This language is accepted by the

automation.

13

q0

q1

Σ

Σ

A 6= {ε} Intially we consider the case when A 6= φ and ε 6∈ A. If ε ∈ A we make the initial state

final. Define for each ai ∈ Σ , Ai = {x ∈ Σ⋆ | ai x ∈ A}. Also define MAX(A) = max{|x|x ∈ A}.

Basis MAX(A) = 0. Then A = {ε} and we have already constructed the required automation.

IH : Assume for all B MAX(B) < n for some n > 0 it is true that B is regular

Induction step. Let MAX(A) = n > 0.

Clearly A =
⋃

1≤i≤m

ai.Ai. In certain cases it is possible that Ai = φ. (when ai is not the prefix of

any string in A.). Also in certain cases when ai ∈ A , Ai = {ε}.

But since A is finite it is clear that each Ai is also finite and further MAX(Ai) < n for each Ai.
By the induction hypothesis there exists a machine Mi which accepts Ai.

Let Mi = 〈 Qi, Σ, δi, qi0, Fi 〉 for each 1 ≤ i ≤ m.

Assume for all i 6= j Qi ∩ Qj = φ.

Construct the machine

M = 〈 Q, Σ, δ, q0, F 〉 as follows :

Q =
⋃

1≤i<m

Qi ∪ {q0} ∪ {qai
| Ai = φ}

where q0, qa1
, . . . , qam

are all mutually distinct and also different from each state in
⋃

Qi

F =
⋃

1≤i≤m

Fi and δ is defined as follows :

for every qi ∈ Qi, δ(qi, a) = δi(qi, a) for each a ∈ Σ

δ(q0, ai) =

{
q0 if Ai 6= φ

qai
if Ai = φ

and δ(qai
, a) = qai

for all a ∈ Σ.

NONDETERMINISTIC FINITE AUTOMATA

Introduction And Motivation

Intuitively it seems obvious that a good way to prove that the union of two regular languages is regular is
to define a DFA that is obtained by combining the capbilities of the individual DFAs of the respective
languages.

Example. In particular , we would like to “connect (the two DFAs) in parallel ” to obtain an automa-
tion which can simulate either of the two behaviours.

14

i) Consider an automation that accepts bit strings which are either multiples of 2 or multiples of 3. The
resulting language is the union of the two languages.

ii) Consider a vending machine that
a) accepts a single 5-rupee coin and delivers coffee or
b) accepts any sequence of 1-rupee and 2-rupee coins that add up to 4 and delivers tea.

It should be possible to combine the two vending machine to get a single vending machine which delivers
coffee or tea according to the money put in. The only thing required is a mechanism of combining the
two vending machine and deciding as soons as a coin is put it whether to trigger the first machine or the
second one.

machine

p0 q0

pc

Coffee Tea

Coffee

machine q4

Tea

Deciding
mechanism

A simple way to combine the two machines is as follows. Define the machine PQ with initial state pq0

δPQ(pq0, 5) = pc

δPQ(pq0, 1) = q1

δPQ(pq0, 2) = a2

for every state in P − {p0}
∪ Q − {q0} define

δPQ(pq, a) =

{
δP (p, a) if pq ∈ P

δQ(pq, a) if pq ∈ Q

In general combining two machines M1 and M2 which accept languages A, B ⊆ Σ⋆ bring in the union of
the following disjoint sets

1) A − B
2) B − A
3) A ∩ B

In the case if 1 and 2 the decision as to which machine to start is easy.However the question of which
machine to run in the case of x ∈ A∩B requires certain external decision-making which we abstract out
as non-determinism.

Having abstracted this out , it also requires that we relax the condition of acceptance or rejection as
follows :
x is accepted by the combined machine if it is accepted by at least one of them
x is rejected by the combined machine only if it is rejected by both of them

Hence there should be a simple way of combining machines to produce machines that accepts unions of
languages such that the decisions that accept unions of languages such that the decisions mechananism
is abstracted away and left to the implementor. To this end we define a “nondeterministic” automation
as follows :

Definition 6. A nonderministic finite automation (NFA) is a structure N = 〈 Q, Σ,△, S, F 〉 where

15

φ 6= S ⊆ Q △ : Q × Σ → 2Q , △ is the transition relation. The function △⋆ : 2Q × Σ⋆ → 2Q is the
natural extension of the function △ and is defined by the rules.

△⋆(T, ε)
df
= T

△⋆(T, ax)
df
= △⋆(△(T, a), x)

where for any set S ⊆ Q

△(T, a) =
⋃

q∈T

△(q, a)

An NFA N accepts x ∈ Σ⋆ if △⋆(q0, x) ∩ F 6= φ and it accepts a language A ⊆ Σ⋆ if it can accepts every
string in A.

Intuitively a NFA accepts a string if there exists a path from one of the start states to one of the final
states and it rejects a string only if there is no path from any start state to any final state. As usual
L (N) denotes the language accepted by N.

Facts 1. Every DFA M = 〈 Q, Σ, δ, q0, F 〉 is equivalent to the NFA N = 〈 Q, Σ, δ, {q0}, F 〉 with

△(q, a)
df
= {δ(q, a)}.

Lemma 2. For any x, y,∈ Σ⋆ and T ⊆ Q
△⋆(T, x.y) = △⋆(△⋆(T, x), y)

Proof. By induction on |x|.
Basis |x| = 0 i.e. x = ε. Then

△⋆(T, εy) = △⋆(T, y) = △⋆(△⋆(T, ε), y).
Induction step : Assume

IH. for all |x′| ≤ n all T ⊆ Q for some n > 0 ,

△⋆(T, x′.y) = △⋆(△⋆(T, x), y)

Consider x = ax′ with |x| = n + 1.
Then

△⋆(T, ax′y) = △⋆(△(T, a), x′y)
let T ′ = △(T, a) = △⋆(T ′, x′y)
By IH we have = △⋆(△⋆(T ′, x′), y)

= △⋆(△⋆(△(T, a), x′), y)
By def of △⋆ = △⋆(△⋆(T, x), y).

Lemma 3. The function △⋆ commutes with set union i.e. for any family {Ti ⊆ Q | i ∈ I} indexed by
the set I.

△⋆(
⋃

1∈I

Ti, x =
⋃

i∈I

△⋆(Ti, x)

Proof. Again by induction on |x|.

Basis x ∈ ε. Then △⋆(
⋃

i∈I

Ti, ε) =
⋃

i∈I

△⋆(Ti, ε)

Induction step Let x = ax′ with |x| > 0

△⋆(
⋃

i∈I

Ti, ax′)

= △⋆(△(
⋃

i∈I

Ti, a), x′)

16

let
⋃

i∈I

Ti = T = △⋆(△(T, a), x′)

= △⋆(
⋃

q∈T

△(q, a), x′)

= △⋆(
⋃

q∈I

⋃

qi∈Ti

△(qi, a), x′)

By IH =
⋃

i∈I

△⋆(
⋃

qi∈Ti

△(qi, a), x′)

=
⋃

i∈I

△⋆(△(Ti, a), x′)

=
⋃

i∈I

△⋆(Ti, ax′)

=
⋃

i∈I

△⋆(Ti, x)

The Subset Construction

Theorem 3. A NFA accepts a language A ⊆ Σ⋆ iif A is regular. Equivalently a NFA accepts A ⊆ Σ⋆

iff there exists a DFA that accepts A.

Proof. (⇐) Assume A ⊆ Σ⋆ is regular. Then there exists a DFA D = 〈QD, Σ, δD, qDo, FD 〉 that accepts
A. Define N = 〈 QD, Σ,△, {qDo}, FD 〉 with △({qD}, a) = δ(qD, a).

(⇒) The proof of this part requires the construction of a DFA that accepts the same language.

Let N = 〈 QN , Σ,△, SN , FN 〉 be a NFA.
Now construct a DFA

D = 〈 QD, Σ, δ, qDo, FD 〉 as follows .

QD
df
= 2QN i.e. each state of the DFA represents a set of NFA state.

δD(qD, a) = △N (qD, a)

=
⋃

qN∈qD

△N{qN}, a)

qDo = SN

FD = {T ⊆ QN | T ∩ FN 6= φ}

Lemma 4. For every T ⊆ QN and x ∈ Σ⋆

δ⋆
D(T, x) = △⋆

N (T, x)

Proof. By induction on |x|.
for x = ε we have

δ⋆
D(T, ε) = T = △⋆

N (T, ε).
for x = ax′ we have
δ⋆
D(T, x) = δ⋆

D(T, ax′)
= δ⋆

D(δD(T, a), x′)
= δ⋆

D(△⋆
N (T, a), x′)

By IH = △⋆
N (△N (T, a), x′)

= △⋆
N (T, ax′)

= △⋆
N (T, x)

17

Claim 1. D and N accepts the same language.

Proof. For any x ∈ Σ⋆

x ∈ L (D)
⇔ δ⋆

D(qDo, x) ∈ FD

⇔ △⋆
N (SN , x) ∈ FD

⇔ △⋆
N (SN , x) ∩ FN 6= φ

⇔ x ∈ L (N)

End of proof of the subset construction theorem

ε-Moves : A Natural Extension of NFA

Clearly for any state q ∈ Q of a NFA and letter a ∈ Σ , we have allowed △(q, a) to be either empty , a
singleton or a set of many states. A natural extension as in the case of the vending machines is to use a
non-deterministic mechansim to choose the correct vending machine which will accepts the sequence of
coins. This extension is called a NFA with ε-moves.

Definition 7. A NFA with ε-moves is an NFA
N = 〈 QN , Σ,△N , SN , FN 〉

with all components as before excepts that
△N : QN × (Σ ∪ {ε}) → 2Q

The intention is that now it is possible for a state transition to occur without the consumption of an input.
In particular now △⋆(T, ε) = T does not necessarily hold since there may be several states in T which
may allow silent moves.

Fact

Any NFA is also an NFA with ε-moves. Typically △N (T, ε) = φ in the case of a NFA without ε-moves.

Definition 8. Let q ∈ QN be a state of a NFA with ε-moves. The ε − closure of q (denoted ε⋆(q)) is
the set of states reachable from q only by ε-moves and is defined inductively as follows :

ε0(q) = q
εn+1(q) = εn(q) ∪ {q′′ ∈ QN | ∃q′ ∈ εn(q) : q′′ ∈ △n(q′, ε)}

ε⋆(q) =
⋃

n≥0

εn(q)

We denote the fact that q′ ∈ ε⋆(q) alternately by q ⇒ q′ to mean that q′ is reachable from q by only a

sequence of ε−moves. Note : q ⇒ q holds for any state

For any set T ⊆ QN we exented this by

ε⋆(T) =
⋃

q∈T

ε⋆(q).

In other words q′ ∈ ε⋆(T) iff ∃q ∈ T : q ⇒ q′

Definition 9. Let △ε⋆

N : 2QN × Σ⋆ → 2QN be defined as
△ε⋆

N (T, ε) = ε⋆(T) = {q′ | ∃q ∈ T : q ⇒ q′}.

△ε⋆

N (T, ax) = {q ∈ QN | ∃q ∈ T : ∃q1, q2 ∈ QN : q0 ⇒ q1
a
→ q2 ⇒ q2 ∧ q ∈ △ε⋆

N (q2, x)}.

Note. △⋆
N (q, ε) = q whereas △ε⋆

N (q, ε) = ε⋆(q)

• Regular Expressions : Representation of regular languages.

• Building NFAε from regular expression.

18

Theorem 4. Every regular expression represents a regular language.

Proof. By induction on the structure of regular expressions.
Basis. φ denotes the empty language and is accepted by a DFA/NFA with no final states.

q0ε is accepted by which is a NFA.

a qfq0a ∈ Σ is accepted by

? is matched by any symbol of Σ obtained by a finite union of the NFA′s for each a ∈ Σ

Σ

q0@ is any string in Σ⋆ is accepted by

19

Induction Step

q0 qf

Nα

Nβ

ε

ε

ε

ε

α ∪ β

α⋆

ε

ε

ε

ε

αβ

Nα Nβ
ε

Theorem 5. For every NFAε there exists a NFA without ε-moves which accepts the same language.

Proof. Let Nε = 〈 Qε, Σ, δε, Sε, Fε 〉 be a NFA with ε-moves Construct the NFA N = 〈 Qε, Σ, δ, S, F 〉
without ε-moves as follows.
For every q ∈ Qε and a ∈ Σ

q
a

−→ q′δ iff ∃q1, q2 : q ⇒ q1
a

−→ε q2 ⇒ q′ in Nε.

Claim 2. N and Nε accept the same language.

Proof. x ∈ L (Nε) with x = a1 . . . an.

⇔ ∃q0 ∈ S ∃qf ∈ F : q0
a1⇒ε q1

a2⇒ε . . .
an⇒ε qf in Nε

⇔ ∃q0 ∈ S ∃qf ∈ F : q0
a1−→ε q1

a2−→ε . . .
an−→ε qf in Nε

Theorem 6. Every regular language has a regular expression representation. We have already proved
the following viz :

1. Every regular expression represents a regular language where the regular expressions were defined
by the following

0) For every a ∈ Σ , a is a RE and L (a) = {a}.

1) ε and φ are regular expression and L (ε) = {ε}

L (φ) = φ

2) For regular expressions α, β.

α.β is a regular expression representing L (α).L β

α ∪ β is a regular expression representing L (α) ∪ L β

20

3) For any regular expression α,

(α) is a regular expression representing L (α)

α⋆ is a regular expression representing (L (α))⋆

∼ α is a regular expression representing ∼ L (α)

Precedence of Operators

⋆ is the highest ∪ is the lowest
• precedes ∪ but is lower than any unary operator

Theorem 7. For every regular language A ⊆ Σ⋆ , there exists a regular expression 0000 with L (α) = A.

Proof. Consider a regular language A and same NFA N = 〈 Q, Σ,△, S, F 〉 which accepts A.
Construction of a regular expression αX

p Q
1 for any X ⊆ Q and states p, q ∈ Q such that

L (αX
pq) = {x ∈ Σ⋆ | p

x
−→ q with all intermediate states in X}

↑

If x = a1a2 . . . am then ∃r1, r2, . . . , rm−1 ∈ X :

p
a1−→ r1

a2−→ r2 −→ . . .
am−1

−→ rm
am−→ q.

1p, q may or amy not be in X

21

By induction on the size of X

Basis X = φ. Let a1, a2, . . . , ak ∈ Σ be all the letters such that p
ai⇒ q for 1 ≤ i ≤ k. Then

if p 6= q αφ
pq

df
=

{
a1 ∪ a2 ∪ · · · ∪ ak. if k > 0

φ if k = 0.

else if p = q, αφ
pq

df
=

{
a1 ∪ a2 ∪ · · · ∪ ak ∪ ε if k > 0

ε if k = 0.

Induction step X 6= φ

Choose any r ∈ X . Let Y = X − {r}

Then αX
pq

df
= αY

pq ∪ αY
pr(α

Y
⇒)⋆αY

rq

Hence by this induction process for each start state sıS and final state f ∈ F we have an expression αQ
sf

which represents the set of all paths from s to f in N . Hence
⋃

s∈S

αQ
sf is the regular expression denoting

the language accepted by N .

Note. This theorem essentially tells us that the language REΣ of regular expressions over Σ is complete
and that it is always possible to convert a DFA or a NFA into a regular expression.

Kleene Algebra of Regular Expressions

+ is associative & commuatative
φ is the identity element for +
+ is idempotent

• is associative
ε is the identity for •
φ is the zero for •
• distributes over + (both left & right)

α⋆ = ε + αα⋆ = ε + α⋆α

The equation x = αx + β has the least solution α⋆β

Better still define ≤ on regular expression such that

α ≤ β iff α + β = β

and have the two influence rules
α γ + β ≤ γ ⇒ α⋆β ≤ γ

and γ α + β ≤ γ ⇒ ααβ ≤ γ
The story so far

From regular expressions to regular grammars

22

EXPRESSION

(REPRESENTATION)

MACHINES

(ACCEPTANCE)

REΣ

RΣ

NFAΣε

NFAΣ

RLGΣ

L

L

DFAΣ

2Σ⋆

Consider the regular expression equation
X = aX + b

Whose solution is the regular expression

X = a⋆b

which may be obtained as the maximal fixpoint under ⊆ of the composition of monotonic functions • an
d + on the lattice 2Σ⋆

String Generation through Grammars

The generative process may intuitively be looked upon as follows. Consider a typical solution of the
equation

X = A.X ∪ B

on language over Σ⋆ i.e. A, B ⊆ Σ⋆ abd we need to find the unknown X . We may construct an increasing
sequence of sets Xi , i ≥ 0

φ = X0 ⊆ X1 ⊆ . . . Xi ⊆ Xi+q ⊆ . . .

such that

23

Xi+1 = A.Xi ∪ B

The maximum solution is the set
⋃

i≥0

Xi

Essentially we are unfolding the recursion in the eqaution inductively to obtain.
X1 = A.φ ∪ B = B
X2 = A.X1 ∪ B = B ∪ A.B
X3 = A.X2 ∪ B = B ∪ A.B ∪ A.A.B.

...
This allows us to “generate” a larger and larger collection of strings from the empty sets. We use this
essentially to define the notion of generation by “orienting” the ‘=’ in a left-to-right fashion.

Grammers & Generation

Definition 10. A right-linear grammar over an alphabet Σ is a structure G = 〈 V, Σ, S, P 〉 where

• V 6= φ is a finite set of variables or nondeterminals

• Σ is finite alphabet with V ∩ Σ = φ.

• S ∈ V is the start symbol of the grammar or rules

• P ⊆f (V ∪Σ)⋆ × (V ∪Σ)⋆ is a finite collection of productions or rules such that each production is
of only one of the following forms.

(i)A −→ xB

(ii)A −→ x

}
where x ∈ Σ⋆ and A, B ∈ V

i.e p ⊆f V × Σ⋆ • (V ∪ {ε}

A derivation of a (right linear) grammar is a sequence of strings in (Σ ∪ V)⋆ starting from S. such that

Example. G = 〈 {S}, {a, b}, S, P 〉 where P consists of the
productions S −→ abS and S −→ ε.
Its derivations are of the form S ⇒⋆ (ab)nS ⇒ (ab)n

S ⇒ abS ⇒ ababS ⇒ abababS ⇒ ababab
for any string xA ⇒ yB iff for some z ∈ Σ⋆ , y = xz and A −→ zB ∈ P .
The reflexive - transitive closure of ⇒ is denoted ⇒⋆ and the language generated by a grammar G with
start symbol S is the set

L (G) = { x ∈ Σ⋆ | S ⇒⋆ x }.

i.e x ∈ L (G) iff there exists a derivation of x from S.

In the example above
ε, ab, abab, . . . , (ab)n, · · · ∈ L (G)

In fact L (G) = { (ab)n | n ≥ 0 }
There also exists infinite derivations which do not contribute to the language generated. An infinite
derivation is obtained by never applying the production S −→ ε.

Lemma 5. Any derivation of a right linear grammar is either of the form
S0 ⇒ x1S1 ⇒ . . . ⇒ x1x2 . . . xiSi ⇒ . . .

or S0 ⇒ x1S1 ⇒ . . . ⇒ x1x2 . . . xiSi ⇒ . . . ⇒ x1x2 . . . xn−1Sn−1 ⇒ x1x2 . . . xn−1xn

where S0, S1, . . . ,∈ V and x1, x2, · · · ∈ Σ⋆.

24

Theorem 8. If G is a right linear grammer then L (G) is a regular language.

Proof. Let G = 〈V, Σ, S0, P 〉 be a right linear grammar with V = {S0, S1, . . . , Sm} with a finite collection
of productions

P = { Si −→ xkSj | Sj ∈ V ∪ {ε} , Si ∈ V , xk ∈ Σ⋆ , 1 ≤ k ≤ n }

If y ∈ L (G) then there exists a derivation S0 ⇒⋆ y of the form

S0 ⇒ xi1Si1 ⇒ xi1xi2Si2 ⇒ . . . ⇒ xi1xi2 . . . xip
= y

with {Si1 , Si2 , . . . , Sip
} ⊆ V.

We construct an automation (NFA) with a start state labelled S0. For each production

Si −→ a1 . . . alSj where Sj ∈ V ∪ {ε}

Construct states Sij
, Si2 , . . . , Sil−1

, Sil
such that

Sij

aj

−→ Sij+1
for 1 ≤ r ≤ l

is a transition in △. If Sj 6= ε then Sij
= Sj otherwise Sil

is a new final state. Clearly for each such
production.
We have the following claim

Si −→ a1 . . . al Sil
for Sil

∈ V ∪ {ε} iff △⋆(Si, a1 . . . al) = Sil

The following claim may then be proven.

S0 ⇒0 iff △⋆(S0, y) ∈ F

where F is the collection of final states of the automation.
It follows therefore that the language generated by a right linear grammar is also the language accepted
by some NFA and hence must be regular.

Theorem 9. Every regular language over Σ may be generated by a right linear grammar.

Proof. Let A ∈ RΣ. Then there exists a DFA

D = 〈 Q, Σ, δ, q0, F 〉

which accepts A. Construct a grammar

G = 〈 V, Σ, q0, P 〉 where V = Q

with
qi −→ aqj ∈ iff δ(qi, a) = qj

and qi −→ ε ∈ P iff qi ∈ F

Claim 3. A is the langauge generated by G.

25

Proof. Every derivation in G is of the form
q0 ⇒ a1q1 ⇒ a1a2q2 ⇒ . . . ⇒ a1a2 . . . anqn ⇒ a1 . . . an where qn −→ ε ∈ P . By the construction of the
grammar it follows that δ⋆(q0, a1 . . . an) = qn ∈ F
Similarly for every string a1 . . . an ∈ L (D) we have a collection of states q0, q1, . . . , qn ∈ Q with qn ∈ F
such that δ⋆(q0, a1 . . . an) = qn. Correspondingly we have the derivation

q0 ⇒ a1q1 ⇒ a1a2q2 ⇒ . . . ⇒ a1a2 . . . anqn ⇒ a1a2 . . . an.

The two theorem proved above give us the following characterization
A language L ⊆ Σ⋆ is regular iff
there exists a right-linear grammar
which generates L

Analogous to the notation of a right - linear grammar is the notion of a left-linear grammar in which
all the productions are of the form S −→ Tx where T ∈ V ∪ {ε} and x ∈ Σ⋆. Both right-linear and
left-linear grammars have the same power of generation. But to prove that left-linear grammars generate
only regular languages we need the following lemma.

Lemma 6. If A ⊆ Σ⋆ is regular them so is AR where AR = {xR |x ∈ Σ⋆} and for any string x = a1 . . . am.
xR = am . . . a1 is the reverse of x.

Proof. Since A is regular there exists a NFA

N = 〈 Q, Σ,△, S, F 〉 with L (N) = A.

Consider the NFA

NR = 〈 Q, Σ,△R, F, S 〉

constructed from N by
(i) making S the set of final states
(ii) making F the set of start states
(iii) taking the universe of the relation △ as the
transition relation.

i.e q
a

−→ q′ ∈ △ iff q′
a

−→ q ∈ △R

The result then follows from the following claim

Claim 4. For all q0 ∈ S and qf ∈ F and x ∈ Σ⋆

qf ∈ △⋆(q0, x) iff q0 ∈ △⋆(qf , xR)

Proof. By induction on the length of x.

Corollary 1. A language A ⊆ Σ⋆ is regular iff AR is regular iff AR is regular

Proof. Follows from the fact that A = (AR)R.
We are now ready to prove our main theorem

Theorem 10. A language is regular iff there exists a left-linear grammar that accepts it.

Proof. We prove that for every left-linear grammar there exists a corresponding right linear grammar
which generates the reverse language and vice-versa.
Let GL be the class of left-linear grammars over Σ and GR the class of right-linear grammars. Define the
following 1 − 1 correspondence.

26

f : GL −→ GR

such that

GL = 〈 VL, Σ, SL, PL 〉 〈 VR, Σ, SR, PR 〉

f(GL) = GR iff
VL = VR , SL = SR and for all T ∈ VL = VR

and ∪ ∈ VL ∪ {ε} = VR ∪ {ε} and x ∈ Σ⋆

T −→ x ∪ ∈ PR iff T −→ ∪xR ∈ PR.

Claim 5. x ∈ L (GL) iff xR ∈ L (GL) for all x ∈ Σ⋆ and GR, GL such that GR = f(GL)

Proof. By induction on the length of x.

Main proof

(⇒) If A ⊆ Σ⋆ is regular then AR is also regular and there exists GR which generates AR. From the
claim above f−1(GR) = GL generates (AR) = A. Hence every regular language may be generated by a
left-linear grammar.
(⇐) Let GL be any left-linear grammar. Then GR = f(GL) is a right-linear grammar that generates
(L (GL))R. But then (L (GL))R must be regular which implies L (GL) is also regular.

However we need to emphasize that a grammar in which there are both left-linear as well as right linear
productions may generate a language that is not regular as the following example shows

Example G = 〈 {S, A, B}, {a, b}, S, P 〉 where S −→ A , A −→ aB , A −→ ε and B −→ Ab are the
productions generates the language

S ⇒ A ⇒ ε{ambm | m≥0}

S ⇒ A ⇒ aB ⇒ aAb ⇒ . . . ⇒ amAbm ⇒ ambm

︸ ︷︷ ︸
2m

The Pumping Lemma

Theorem 11. Let A ⊆ Σ⋆ be a regular language. Then there exists m > 0 such that for any x ∈ A with
|x| ≥ m x may be decomposed into x = uvw with |uv| ≤ m and |v| > 0 such that xi = uviw ∈ A for every
i ≥ 0.

A ⊆ Σ⋆ is regular
⇒ ∃m > 0 : ∀x ∈ A : |x| ≥ m ⇒

∃ u, v, w : x = uvw ∧ |uv| ≤ m ∧ |u| > 0
∧ ∀k ≥ 0 : xk = uvkw ∈ A.

Proof. If A is finite then choose m > max{|x| |x ∈ A} and the theorem holds vacuously. So assume A is
infinite.

Claim 6. If A is infinite then for each n ≥ 0 , there exists x ∈ A such that |x| > n.

Proof. Suppose not. Then for some value of n ≥ 0. every string in x ∈ A has a length ≤ n. But for any

k ≥ 0 and finite Σ , Σk is a finite set which implies
⋃

k≤n

Σk is also finite. In fact Σk has exactly |Σ|k

different strings and |
⋃

k≤n

Σk| =
∑

k≤n

|Σ|k.

27

The contrapositive of the pumping lemma states that

∀m > 0 : ∃x ∈ A : |x| ≥ m ∧
∀u, v, w : x = u v w ∧ |uv| ≤ m ∧ |v| > 0

⇒ ∃ k ≥ 0 : xk = uvkw 6∈ A
⇒ A is not regular.

CHALLENGER’S STRATEGY
1. x = ambm

2. k = 0

Example A = {anbn|n ≥ 0} is not regular. Assume A is regular. Therefore the pumping lemma there
must hold and A is infinite. Since A is regular there must be a DFA D which accepts A. Suppose the
DFA has N states. Choose m = N + 1. Consider the string ambm and the sequence of states

q0
a

−→ q1
a

−→ . . .
a

−→ qN
a

−→ qm
b

−→ qm+1
b

−→ . . .
b

−→ q2m

Clearly for some i < j < N , qi = qj

Choose u = ai, v = aj−i, w = am−jbm. so that x = aiaj−ibm−jbm = uvw. Hence every xk = ai(aj−i)kam−jbm ∈ A.
In particular x0 = aiam−jbm = am−j+ibm ∈ A. But since j 6= i , m − j + i 6= m. Hence x0 6∈ A which is
a contradiction. Hence the assumption that A is regular is wrong.

The proof proper Since A is regular there exists a DFA D = 〈 Q, Σ, δ, q0, F 〉 which accepts A. Let
|Q| = n. Since A may be assumed to be infinite it does have strings of length > n + 1. Choose any such
string |x| ≥ n + 1. Then δ⋆(q0, x) = qf ∈ F consider the sequence of states in the DFA which lead to qf

from q0. This is a sequence of n + 2 states.

q0, q1, . . . , qn−1, qn, qf

By the pigeon hole principle there exists i < j ≤ n such that qi = qj . This implies that x = uvw such
that

{δ⋆(q0, u) = qiδ
⋆(qi, v) = qi = qjδ

⋆(qj , w) = qf}
|uv| ≤ n + 1 = m

|v| > 0
Assume v = av′ and w = bw′. Clearly δ(qi, a) = qi+1 and δ(qj , b) = qj+1 = δ(qi, b)
It follows therefore that for any k ≥ 0

{δ⋆(q0, u) = qiδ
⋆(qi, v

k) = qiδ
⋆(qi, w) = qf

}
⇒ xk = uvkw ∈ A

The Pumping Lemma as a game

Let Σ be any alphabet (6= φ) and let A ⊆ Σ⋆ be a langauge. The game is a 2-person game between
DEFEFDER who tries to defend the assertion “A is regular” and a CHALLENGER who challenges the
assertion. The game proceeds as follows :

1. DEFENDER : chooses a positive integer m > 0.

2. CHALLENGER : chooses an x ∈ A with |x| ≥ m.

3. DEFENDER : decomposes x into 3 parts u, v, w such that v = 6= ε and |uv| ≤ m

28

4. CHALLENGER : chooses k ≥ 0

Result : if xk = uvkw ∈ A then DEFENDER wins.
else CHALLENGER wins.

Now CHALLENGER has a winning strategy for A ⇒ A is not regular.

However if DEFENDER has a winning strategy for A ?

MAIN QUESTION. ARE THERE NON-REGULAR LANGUAGES
FOR WHICH DEFENDER HAS A WINNING STRATEGY

Example. Determine whether A = {a2n|n ≥ 0} is regular. Since the regular expression (a a)⋆ is a
representation of the language A the DEFENDER must have a winning strategy.

a

a

(a a)
⋆

is accepted by

D : choose m = 2. (no of states in the DFA).
C : choose any n ≥ 2 , x = a2n

D : choose i = 0 , j = 2 with u = ε and v = a2 ⇒ x = a2n = a2a2(n−1) ⇒ w = a2(n−1).
C : choose any k ≥ 0.

DEFENDER’S STRATEGY
1. m = 3
2. u = ε, v = a2

Result : DEF has a winning strategy since for all n ≥ 2 and all k ≥ 0 , xk = (a2)ka2(n−1) = a2(n+k−1) ∈ A.

Example. Determine whether A = {a2n+1|n ≥ 0} is regular.

a a

a

D : choose m = 3.
C : choose any n ≥ 1.
D : choose i = 1 , j = 2 with u = a and v = a2

⇒ x = uvw = a3a2n+1−3) ⇒ w = a2n−2 = a2(n−1).
C : choose any k ≥ 0.

⇒ xk = a(a2)ka2(n−1) = a2n−2+2k+1 = a2(n+k)+1 ∈ A.

29

DEFENDER’S STRATEGY
1. m = 3
2. i = 1, j = 2 i.e. u = a, v = a2

Example Determine whether A = {an2

|n ≥ 0} is regular. We preove that C has a winning strategy.

D : Consider any m > 0.
C : Consider any n > m > 0. ⇒ n2 > n > m > 0 , x = an2

D : Chooses any i ≥ 0, j > 1 such that i + j ≤ m.
⇒ 1 < j ≤ m < n < n2.
⇒ ai v = ai w = a(n2−(i+j)).

C : Challenger chooses k such that

xk = ai(aj)kan2−(i+j) = an2+kj 6∈ A.

CHALLENGER’S STRATEGY

1. x = an2

, n2 > n > m > 0
2. k = 1

challenger has a winning strategy provided.
n2 + kj is not a perfect square for C′s choice of k. Since 1 < j < n we have

n2 < n2 + j < n2 + n. < n2 + 2n + 1 = (n + 1)2

Hence challenger chooses k = 1 and it is guaranteed taht n2 < n2 + j < (n + 1)2 and hence n2 + j is
never a perfect square.

Example Consider the language A = {a2n

|n ≥ 0}.
D : Chooses some m > 0.
C : Chooses x = a2n

with n ≫ m > 0
D : Chooses i ≥ 0 , j > 0 with u = ai , v = aj

such that i + j ≤ m.
⇒ x = u v w and w = a(2n−(i+j))

C : Chooses k = 2 ⇒ xk = aia2j a(2n−(i+j)) = a2n

+ j

CHALLENGER’S STRATEGY

1. x = an2

, n > m > 0
2. k = 2

Result : C always wins provided 2n + j is not a power of 2. 2n + j is a power of 2 for n > 0 only when
j = 2n. But n > m > 0 ⇒ 2n > m. But j ≤ m ⇒ j = 2n is impossible.
Example of a non-regular language which satisfies the condition of the pumping lemma

Let A = L (b⋆c⋆) = {bmcn|m, n ≥ 0}
B = {abkck|k ≥ q} (⋆ this is clearly a context-free language)

30

C = {ai+2bjck|i, j, k ≥ 0} = L (aa a⋆b⋆c⋆)

Claim 7. A ∪ B ∪ C is not regular.

Proof. Note : B 6⊆ A ∪ C since ∀x ∈ A ∪ C : #a(x) 6= 1.
whereas ∀y ∈ B : #a(y) = 1.

In fact A, B, C are mutually disjoint .
Proof by contradiction : Assume L = A∪B∪C is regular and accepted by a DFA D = 〈 Q, {a, b, c}, δ, q0, F 〉.
Since A ∩ B = B ∩ C = C ∩ A = φ we have B = L − (A ∪ C) = L∩ ∼ (A ∪ B) from closure properties
that B is regular which is a contradiction.

Claim 8. |Q| > 1.

Proof. Since q0 ∈ Q, |Q| ≥ 1. Since a ∈ B, δ(q0, a) 6= q0 otherwise any an for n ≥ 0 would be accepted
by D which is not the case. Hence |Q| > 1.
Assume |Q| = n > 1. Consider any string x = abkck ∈ B, such that k > n. Let

q0
a

−→ q1
b

−→ . . .
b

−→ qk
b

−→ qk+1
c

−→ . . .
c

−→ q2k+1

Since k > n, there must be states 1 ≤ i ≤ j ≤ k such that ai = qj .
This implies that

q0
a

−→ q1
b

−→ . . .
b

−→ qi = qj
b

−→ . . .
b

−→ qj = qi︸ ︷︷ ︸
a cycle which may be pumped.

b
−→ . . .

b
−→ qk+1

c
−→ . . .

c
−→ q2k+1

x = uvw where u = abi−1 , v = bj−i , w = bk+1−jck and hence for any x0 = uw is accepted
by D.
But uw = abi−1bk+1−jck

= a bk−(j−i)ck

But 1 ≤ i < j ≤ k
⇒ j − i ⇒ −(j − i) < 0
⇒ k − (j − i) < k

6∈ B since k − (j − i) 6= k
A ∪ C since #a(uw) = 1.

Hence x0 is accepted by D but x0 6∈ A ∪ B ∪ C. Hence there is no DFA which accepts A ∪ B ∪ C

DEFENDER’S WINNING STRATEGY
1. m = 2

2. u = ε and v =

{
a2 if x ∈ a2b⋆c⋆

x(1) else

Claim 9. By choosing m = 2, DEFENDER has a winning strategy.

Proof. Let CHALLENGER choose any x ∈ A ∪ B ∪ C with |x| ≥ 2
The DEFENDER then has the following cases

Case 0. x ∈ A with |x| ≥ 2

⇒ x = bicj for some i, j ≥ 0 and i + j ≥ 2

⇒ x =






ci with j ≥ 2 and i = 0

bi with i ≥ 2

bicj with i ≥ 1 , j ≥ 1

DEFENDER chooses u = ε and v = x(1)

31

⇒ x =






bi with i ≥ 2 ⇒ v = b ∧ w = bi−1 ⇒ vkw = bk+i−1 ∈ A

cj with j ≥ 2 ⇒ v = c ∧ w = cj−1 ⇒ vkw = ck+j−1 ∈ A

bicj with i ≥ 1, j ≥ 1 ⇒ v = b ∧ w = bi−1cj ⇒ vkw = bk+i−1cj ∈ A

In each case vkw ∈ A, for all k ≥ 0 and hence DEFENDER wins.

Case 1. x ∈ B with |x| ≥ 2

⇒ x = a bicj with i ≥ 1. (if i = 0 then |x| < 2). DEFENDER chooses u = ε and v = x(1) = a .

Then for every choice of k , we have

vkw =






bici ∈ A if k = 0

abici ∈ B if k = 1

akbici ∈ C if k > 1

and the DEFENDER wins.

Case 2. x ∈ C with |x| ≥ 2

⇒ x = a2+ibjcl with i, j, l ≥ 0.

⇒ x =

{
a2bjcl with i = 0, l ≥ 0.

ai+3bjcl with i ≥ 0, j, l ≥ 0.

Case 2.2 x = a2bjcl

Then DEFENDER chooses u = ε and v = a2

⇒ w = bjcl with j, l ≥ 0

for any k ≥ 0 we have vkw = a2kbjcl

k = 0 ⇒ vkw = bjcl ∈ A. and DEFENDER wins
k > 0 ⇒ vkw = a2kbjcl ∈ A. and DEFENDER wins
Case 2.3 x = ai+3bjcl with i ≥ 0, j, l ≥ 0

The DEFENDER chooses u = ε and v = a
⇒ w = ai+2bjcl

and for all k ≥ 0, vkw = ai+k+2bjcl ∈ C and DEFENDER wins.

DEFENDER’S STRATEGY (summary)
1. m = 2
2. For any x ∈ A ∪ B ∪ C,

u = ε and v =

{
a2 if x ∈ a2b⋆c⋆

x(1) otherwise

Other Application of Pumping Lemma

Theorem 12. Let D be a DFA with m states. Then L (D) 6= φ iff there exists a string x ∈ L (D) such
that |x| < m

Proof. (⇒) Let x be a minimal length string in L (D). If |x| ≥ m then by the pumping lemma x = uvw
with |uv| ≤ m and v = ε. Clearly uw = uv0w ∈ L (D). But since |v| > 0 |uw| < |x| contradicting the
assumption that x is a minimal lenth string in L (D).

32

The above theroem finishes a decision procedure to test whrther a given DFA , D accepts the empty
language. Since the number of strings of length < m is finite , it is neccessary to run the DFA on all
possible string of length < m , to determine it.

Theorem 13. If A is an infinte regular language then there exist strings u, v, w such that uviw ∈ A for
all i ≥ 0.

Proof. Obvious

Theorem 14. Let D be a DFA with m states m > 0. Then L (D) is infinite iff L (D) contains a string
x, with m ≤ |x| < 2m.

Proof. (⇐) Assume x ∈ L (D) with m ≤ |x| < 2m. By the pumping lemma x may be decomposed into
u, v, w with v 6= ε and such that for all i ≥ 0, uviw ∈ L (D). Hence L (D) is infinite.
(⇒) Assume L (D) is infinite. Then there exist strings x ∈ L (D) with |x| ≥ 2m. Let x be the stortest
such string and x = x1x2 where |x1| = m. and |x2| ≥ m. Consider the proof of the pumping lemma with
q = δ(q0, x1). Clearly the path from q0 to q. toches (m + 1) states while accepting x1. This implies ther
exists a q′ which appears twice

q0 −→ . . . −→ q′ −→ . . . −→ q′ −→ . . . −→ q.

Hence x1 may be decomposed into u, v, w such that v = ε, x1 = uvw and δ(q0, u) = q′ , δ(q′, v) = q′ and
δ(q′, w) = q. Clearly x = uvwx2 ∈ L (D) and state q′ is repeated implies x′ = uwx2 ∈ L (D). Further
since D is a DFA , v 6= ε. Hence |ε| > 0. |v| ≤ m.

|x′| = |uwx2| ≥ |x2| ≥ m. and since v 6= ε , |x′| < |x|

But since x is the stortest word of length ≥ 2m. It follows that |x′| 6≥ 2m and must be < 2m. But
|x′| ≥ m. Hence m ≤ |x′| < 2m and x′ ∈ L (D)

Decision procedure to determine whether the language accepted by a DFA is
finite

Simply run the DFA on all strings of length in the interval (m, 2m). If it accepted none than the DFA
accepts only a finite language. Otherwise it accepts an infinite language.

Ultimate Periodicity

Definition 11. A subset ∪ ⊆ N = {0, 1, 2, . . .} is said to be ultimately periodic if there exist m ≥ 0 ,
p > 0 such that for all n ≤ m , n ∈ ∪ iff n + p ∈ ∪.

Example

1. Every finite subset ∪ of N is ultimately periodic with m = max ∪ +1 and any p > 0.

2. Every infinite arithmetic sequence is ultimately periodic with a period defined by the common dif-
ference between successive number and m the starting number

3. The union of any finite collection of infinite arithmetic sequences with different starting points but
the samw common difference is also ultimately periodic. That is if Ai = {mi + jd|j ≥ 0, mi ≥ 0},

i > 0 is a finite collection of k ≥ 0 infinite sets. Then ∪ =
⋃

i≤k

Ai is ultimately periodic with

m = max mi and period d.

33

HOMOMORPHISMS

Definition 12. Let Σ and Γ bealphabets. Then any function h : Σ⋆ −→ Γ⋆ is a homomorphism if
∀x, y ∈ Σ⋆ : h(x.y) = h(x).h(y)

Definition 13. Let h0 : Σ −→ Γ⋆. h : Σ⋆ −→ Γ⋆ is said to be a homomorphic extension of h0 if
(i) h is a homomorphism
(ii) ∀a ∈ Σ : h(a) = h0(a).

Lemma 7. For any homomorphism h : Σ⋆ −→ Γ⋆ , h(ε) = ε

Proof. Assume not. Then h(ε) = u 6= ε. This implies for any x ∈ Σ⋆

v = h(x) = h(ε.x) = h(ε).h(x) = uv = u2v = . . .
which implies h is not even a function from Σ⋆ to Γ⋆

Lemma 8. Every h0 : Σ −→ Γ⋆ has a unique homomorphic extension.

Proof. Consider h : Σ⋆ −→ Γ⋆ a homomorphic extension of h0. Since h is a homomorphic we have
h(ε) = ε

and ∀a ∈ Σ : h(a) = h0(a). and ∀x, y ∈ Σ⋆ : h(x.y) = h(x).h(y). If h′ is any other homomorphic
extension of h0. We have

h′(ε) = ε = h(ε)
and by induction hypothesis is (assuming h′(x) = h(x) for all |x| < n) if y = ax then h′(y) = h′(ax) =
h0(a).h′(x) = h0(a).h(x) = h(ax). Hence h = h′ and homomorphic extensions are unique.

Definition 14. Let h : Σ⋆ −→ Γ⋆ be a homomorphism. For any A ⊆ Σ⋆ h(A) = {h(x)|x ∈ A} and for
any B ⊆ Γ⋆ h−1(B) = {x ∈ Σ⋆|h(x) ∈ B}. h(A) is called the image of A under h and h−1(B) is called
the pre-image of B under h.

Theorem 15. Let h : Σ⋆ −→ Γ⋆ be a homomorphism. for any regular B ⊆ Γ⋆, h−1(B) is also regular.

Proof. Let DB = 〈QB, Γ, δB, q0, FB 〉 be a DFA that accepts B. Let A = h−1(B). Construct the DFA
DA = 〈 QA, Σ, δA, q0, FA 〉 with QA = QB , FA = FB and the same start state q0.
Define δA(q, a) = δ⋆

B(q, h(a)) for all q ∈ QA, a ∈ Σ.

Claim 10. δ⋆
A(q, x) = δ⋆

B(q, h(x)) for all x ∈ Σ

Proof. By induction on |x| since δA(q, ε) = q = δB(q, ε)

Claim 11. L (DA) = h−1(L (DB)).

Proof. x ∈ L (DA) ⇔ δ⋆
A(q0, x) ∈ F

⇔ δ⋆
A(q0, h(x)) ∈ F

⇔ h(x) ∈ L (DB)
⇔ x ∈ h−1(L (DB))

Theorem 16. Let h : Σ⋆ −→ Γ⋆ be a homomorphism. If A ⊆ Σ⋆ is regular then so is h(A).

Proof. If A ⊆ Σ⋆ is regular then there exists a regular expression α ∈ REΣ such that L (α) = A. Let
h(A) = B ⊆ Γ⋆. We define a function

REΣ −→ REΓ

which translates regular expression α into β i.e. h(α) = β. We define h by induction on the structure of
α as follows.h(φ) = φh(ε) = ε

34

h(a) = if h(a) = y , for each a ∈ Σ.h(α + α′) = h(α) + h(α′)h(α.α′) = h(α).h(α′)h(α⋆) = (h(α))⋆

Claim 12. For any α ∈ REΣ , L (h(α)) = h(h(α)).

Proof. Follows by induction on the structure of α

Theorem 17. Any set A ⊆ {a}⋆ is regular iff the set {m|am ∈ A, m ≤ 0} is ultimately periodic.

Proof. (⇒) If A is finite then take m = max{i|ai ∈ A}+ 1. Otherwise let A be infinite and consider any
DFA. D which accepts A. Clearly since it is deterministic the transition graph of the DFA (resticted
to the accessible states) looks as follows where there is an initial

q0
a

−→ q1
a

−→ . . .
a

−→ qi
a

−→ qi+1

Figure 1:

linear sequence of distinct states followed by a loop of length p ≥ 1

Choose m = the number of distinct initial states and p the length of the loop.
Note If the path through the DFA extend beyond the loop

q0
a

−→ . . .
a

−→ qi
a

−→ qi+1
a

−→ qi+1
a

−→ . . .
a

−→ qm

Figure 2:

then an equivalent DFA which accepts the same language may be constructed which conforms to Fig 1.
(⇐) Conversely let ∪ be any ultimately periodic set with period p > 0 and starting point n4. Then
construct a DFA{a} with n + p + 1 states which accepts exactly the set {am|m ∈ ∪}

Application of homomorphisms

Corollary 2. Let A ⊆ Σ⋆ be any regular language. Then the set sup = {|x| | x ∈ A} is ultimately
periodic.

35

Proof. Since A is regular, h(A) is also regular where h : Σ −→ {1} is defined as ∀a ∈ Σ : h(a) = 1.
FRom the pervious theorem it follows that h(A) is ultimately periodic. But h(A) is merely th unary
representation of the elements of ∪.

Example

A = {aibjci+j | i ≥ 0, j ≥ 0} can be proven to be non-regular by considering the homomorphism
h(a) = h(b) = b and h(c) = c. Then h(A) = {bi+jci+j |i + j ≥ 0} which is clearly non-regular.

DFA MINIMIZATION

In general, for any regular language there may be several possible DFA designs. It is possible to minimize
the number of states in two stages :
(i) Get rid of inaccessible states. A state is inaccessible if there is no path to it from the start state.
(ii) Collapse states which are “equivalent” in some sense without chnaging the language accepted.

In general inaccessible states may be identified by “walking” forwards from the start state to the final
states and marking all the the states reached. Hence a depth-first search algorithm or a greadth-first
search algorithm should do the job.
In more interesting question is that of collapsing equivalent states.
Given a DFAD consisting only of accessible states, for any string x, x ∈ L (D) iff δ⋆(q0, x) ∈ F . If
q = δ⋆(q0, x) 6∈ F then q is clearly a reject state.

Definition 15. Two states p, q are said to be indistinguishable (denoted p ≈ q) iff ∀x ∈ Σ⋆ : δ⋆(q0, x) ∈
F ⇔ δ⋆(q, x) ∈ F . p is said to be distinguishable from q if there exists a distinguished wors w ∈ Σ⋆ such
that either δ⋆(p, w) ∈ F ∧ δ⋆(q, w) 6∈ F or δ⋆(p, w) 6∈ F and δ⋆(q, w) ∈ F .
Fact

1. Indistinguishability is an equivalence relation on the states of a DFA.

i.e. ∀p ∈ Q : p ≈ p reflexivity

∀p, q ∈ Q : p ≈ q ⇒ q ≈ p symmetry

∀p, q, r ∈ Q : p ≈ q ∧ q ≈ r ⇒ p ≈ r transitivity.

2. ≈ partitions the set of states Q into equivalence classes.

[p]≈
df
= {q ∈ Q|p ≈ q}

p ≈ q ⇔ [p]≈ = [q]≈

}
for any p, q ∈ Q
[p]≈ ∩ [q]≈ = φ
∨ [p]≈ = [q]≈

Q/ ≈
df
= { [p] | p ∈ Q }.

3. For any DFA D = 〈 Q, Σ, δ, q0, F 〉,

D/ ≈ = 〈 Q/ ≈, Σ, δ≈, [q0]≈, F ≈ 〉

where δ≈([p], a) = [δ(p, a)]≈

We now have to show that this quotient construction is well-defined and that D/ ≈ is indeed a DFA.
This involves showing that δ≈ well-defined.

Lemma 9. If p ≈ q then δ(p, a) ≈ δ(q, a) for all a ∈ Σ

Proof. p ≈ q ⇔ ∀x ∈ Σ⋆ : δ⋆(p, x) ∈ F ⇔ δ⋆(q, x) ∈ F .
Consider any a ∈ Σ and y ∈ Σ⋆.
Let δ(p, a) = pa and δ(q, a) = qa. For any y ∈ Σ⋆

we have

36

δ⋆(pa, y) ∈ F

⇔ δ⋆(p, ay) ∈ F

⇔ δ⋆(q, ay) ∈ F

⇔ δ⋆(qa, y) ∈ F





⇒ pa ≈ qa

form this lemma it follows that the definition
δ≈([p]≈, a) = [δ(p, a)]≈ is well defined.

Lemma 10. p ∈ F ⇔ [p]≈ ∈ F/ ≈

Proof. (⇒) follows from the definition.
(⇐) Let q ∈ [p]≈ ∈ F/ ≈.
Clearly if p ∈ F then δ⋆(p, ε) = p ∈ F and since q ≈ p, δ⋆(q, ε) = q ∈ F .

Lemma 11. ∀x ∈ Σ⋆ : δ⋆
≈([p]≈, x) = [δ⋆(p, x)]≈.

Proof. By induction on |x|.
We now prove that D/ ≈ accepts the same language as D.

Theorem 18. L (D/ ≈) = L (D)

Proof. For any x ∈ Σ⋆, x ∈ L (D/ ≈)

⇔ δ⋆
≈([q0]x, x) ∈ F/ ≈

⇔ [δ⋆(q0, x)]≈ ∈ F/ ≈

⇔ δ⋆(q0, x) ∈ F

⇔ x ∈ L (D)

Consider the indistinguishability relation on the states of D/ ≈. That is let

[p]≈ ∼ [q]≈ ⇔ ∀x ∈ Σ⋆ : δ⋆
≈([p]≈, x) ∈ F/ ≈⇔ δ⋆

≈([q]≈, x) ∈ F/ ≈

Claim 13. [p]≈ ∼ [q]≈ ⇒ [p]≈ = [q]≈.

Proof. [p]≈ ∼ [q]≈

⇒ ∀x ∈ Σ⋆ : δ⋆
≈([p]≈, x) ∈ F/ ≈⇔ δ⋆

≈([q]≈, x) ∈ F/ ≈

⇒ ∀x ∈ Σ⋆ : [δ⋆([p], x)]≈ ∈ F/ ≈⇔ [δ⋆([q], x)]≈ ∈ F/ ≈

⇒ ∀x ∈ Σ⋆ : δ⋆(p, x) ∈ F/ ≈⇔ δ⋆(q, x) ∈ F

⇒ p ≈ q

⇒ [p]≈ = [q]≈

37

CONTEXT-FREE LANGUAGES

Definition 16. A grammar G = 〈 V, Σ, S, P 〉 is linear if every production has at most one variable on
the right hand side.

Example The following grammar G is linear but neither right linear nor left-linear.

S −→ A
A −→ aB|ε
B −→ Ab

Equivalently
S −→ ε|aB
B −→ Sb

L (G) = {anbn | n ≥ 0}.

Definition 17. A grammar G = 〈 V, Σ, S, P 〉 is callled context -free if all productions have the form
A −→ α where A ∈ V and α ∈ (V ∪ Σ)⋆. The language generated L (G) by a contextr-free grammar is
called a context-free language.

Example S> −→ AS= , S= −→ aS= b | ε , A −→ aA|a is a grammar with start symbol S> that
generates {ambn | m > n ≥ 0}. Similarly

S< −→ S= B , B −→ bB | b

generate {ambn | 0 ≤ n < n}. Then S 6= −→ S> | S< generates the language {ambn | m 6= n}.

Example S −→ aSb | SS | ε is a grammar that generates balanced parentheses sequence. This grammar
is context-free but is not linear. The language is described by

{w ∈ {a, b}⋆ | #a(w) = #(w) ∧ ∀v 4 w : #a(v) ≥ #b(v)}

Facts And Remarks

F1. Every right linear or left linear language is a linear language.
F2. Every linear language is context-free.
R3. Whereas the language {ambn|m 6= n} has been generated by a non linear CF grammar , there does exist

a linear grammar which can generate it.
R4. The example above is of a language that cannot be generated by a linear grammar.

Derivation Trees

Let G = 〈 V, Σ, S, P 〉 be a CFG. A rooted ordered tree is called a derivation tree for G iff it satisfies the
following conditions.

0. The rooot is labelled S.

1. Every leaf has a unique label from Σ ∪ {ε}.

2. Any leaf labelled ε has no other siblings

3. Every non-leaf node is labelled (uniquely) bu a symbol from V .

4. If a non-leaf node has a label A and its children from left to right are labelled respectively with
symbols that from a string al ∈ (V ∪ Σ)+ then A −→ α ∈ P .

A partial derivation tree is one which is like a derivation true expcept that the condition ! is replaced by

1′. Every leaf has a unique label from V ∪ Σ ∪ {ε}.

38

Definition 18. The yield of a tree is the string of symbols obtained by reading the labels on the leaves
from left to right (omitting all occurrences of ε).

fact Every derivation tree is also a partial derivation tree

Proof that the set of all balanced parenthesis is generated by the grammar

S −→ aSb | SS | ε

The set BP = {w ∈ {a, b}⋆ | #a(w) = #b(w) ∧ ∀v 4 w : #a(v) ≥ #b(v)}

The proof is divided into two claims for the

Lemma 12. S ⇒⋆ x ∈ {a, b}⋆ implies x ∈ BP .

Proof. By induction on the length of the derivation S ⇒⋆ x. We actually prove by induction on the
length of derivations for all sentential forms generated by the grammar that

S ⇒⋆ α ∈ (V ∪ Σ ∪ {ε})⋆ implies

α ∈ Bp′ = {β ∈ (V ∪ Σ ∪ {ε})⋆ | #a(β) = #b(β) ∧ ∀ −→ ′
4 α : #a(α′) ≥ #b(α′)}

By induction on the length of the derivation S ⇒⋆ α.
Basis 0. α = S and S ∈ BP ′.
Ind Step. Assume for all derivations of length ≤ k, S ⇒⋆ α, α ∈ BP ′. Consider any derivation of
length k + 1 with S ⇒⋆ α ⇒ β.

By IH α ∈ BP ′. By case analysis we have the following possibilities.

(i) α = α1Sα2 ⇒ α1aSbα2 = β

(ii) α = α1Sα2 ⇒ α1SSα2 = β

(iii) α = α1Sα2 ⇒ α1α2 = β






In each case it is
clear that β ∈ BP ′

Lemma 13. Every x ∈ BP is generated by the grammar.

Proof. By the induction on the length of x.

Basis |x| = 0 ⇒ x = ε and S ⇒ ε by the rule S −→ ε.

Induction Step If |x| > 0 then we have two cases.

case(i) ∃ y ≺: y ∈ BP
case(ii) ¬ ∃ y ≺: y ∈ BP

case(i) ∃ y ≺: y ∈ BP ⇒ x = y z for some z.

Claim 14. z ∈ BP

Proof. Since #a(x) = #b(x) and #a(y) = #b(y)
#a(x) = #a(y) + #a(z) and #b(x) = #b(y) + #b(z)
we have #a(z) = #a(x) − #a(y)

= #b(x) − #b(y)

39

= #b(z)

For any prefix w 4 z we have

#a(w) = #a(yw) − #a(y)
0000

≥ #(yw) − #b(y)
= #b(w)

Hence since y ∈ BP and z ∈ BP and |y| < |x| and |z| < |x| we have by IH

S ⇒⋆ y
S ⇒⋆ z.

It follows that the following derivation generate x

S ⇒ SS ⇒⋆ yS ⇒⋆ yz.

case(ii) ¬ ∃ y ≺: y ∈ BP and |x| > 0.

This implies x = azb for some z ∈ BP . and |z| < |x|. Hence there exists a derivation S ⇒⋆ z.
Therefore the following derivation generate x

S ⇒ aSb ⇒⋆ azb = x

Definition 19. A leftmost derivation is a derivation in which the leftmost variable is rewrithen. Simi-
larly we have rightmost derivations.

Fact. For every derivation tree there is a unique leftmost (rightmost) derivation which corresponds to a
depthfirst traversal of the tree in which the leftmost rightmost subtree is explored before any other subtree.

Theorem 19. Let G = 〈 V, Σ, S, P 〉 be a CFG. Then for every w ∈ L (G) there exists a derivation tree
whose yield is w.

Proof. Since every derivation tree DT is also a partial derivation tree PDT it suffices to prove the
following claim.

Claim 15. For every sentential form α of G there exists a partial derivation tree whose yield is α.

Proof. By induction on the number fo steps in a derivation of G that ends in α.

Basis S is the only sentential from derivable in 0 steps.

Induction Step Assume for every sentential from α derivable in k steps there exists a PDT of depth k. Let
α = β in one step. Hence α = α1Aα2 for some α1, α2 ∈ (V ∪ Σ)⋆ and β = α1γα2 for some A −→ γ ∈ P .
Consider the PDT for α, which exists by IH. The yield of this PDT is α. Hence there is a leaf node A
preceded by leaf nodes of the symbols of α1 and succeeses by the symbols of α2. By expanding the node
labelled A to leaf nodes corresponding to the order of symbols in γ we get a new PDT whose yield id
α1γα2 = β.

Theorem 20. Every PDT of G represents some sentential from of G.

40

Proof. By induction on the maximum depth of PDTs.
BAsis 0. The only sentential form is the single root node labelled S which is also the leaf node.

Induction Steps. Assume every PDT of depth ≤ k > 0 represents a sentential form α of G where the
yield of the PDT is α.
Consider any PDT of depth k + 1. Consider all the non-leaf nodes at depth k. Clearly all of them are
variable symbols say A1, . . . , Aj , j > 0. For each Ai, 1 ≤ i ≤ j consider the ordered sequence of children
α1, . . . , rj . Clearly there are productions Ai −→ γi ∈ P which yielded this tree. Consider the yield of the
PDT upto depth k. By the IH it represents a sentential form.

α = x0A1x1A2 . . . Ajxj

where x0, . . . , xj ∈ Σ⋆. Again this is a sentential form of the grammar there must be a deivation

S ⇒⋆ α = x0A1x1 . . . Ajxj

Also the yield of the PDT of depth k + 1 is of the form

β = x0γ1x1 . . . γjxj

It is easy to see that in j-steps it is possible to derive β from α. i.e

S ⇒⋆ x0A1x1 . . . xj−1Ajxj ⇒ x0γ1x1 . . . xj−1Ajxj

⇒

...

⇒ x0γ1x1 . . . xj−1Ajxj





j-steps

Hence β is a sentential form of the grammar

Corollary 3. (Converse of yield theorem) The yield of any derivation tree is a sentence of L (G).

Q1. We need to distinguish between states q0 and q1 which generate a carry of 0 or 1. Initially there is
only a previous carry of 0. Depending on the carry a triple may acceptable or not. Once an unacceptable
triple arrives the machine goes into a fail state and never recovers. The

41

Σ

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0 0 0

0 0

0 1 0

0 1 1

1 0 0

1

1

1 1 1

1

10

0

0 0 0

0 0 1

0 1 0

0 1 1

1

1

1

1 1

1

1

1

0 0

0

0

q0

q1

qf

qf

q0

qf

q0

q1

qf

qf

q0

q1

qf

q1

qf

qf

Current state

0

@

0
0
0

1

A

S

0

@

1
0
1

1

A

0

@

1
1
0

1

A

, , ,

0

@

0
0
1

1

A

,

0

@

0
1
0

1

A

,

0

@

1
0
0

1

A

,

0

@

1
1
1

1

A

0

@

0
0
1

1

A

0

@

1
1
0

1

A

0

@

1
0
0

1

A

0

@

0
1
0

1

A

, ,

0

@

1
1
1

1

A

4

,

0

@

0
1
1

1

A

,

0

@

0
0
0

1

A P a b c q′q

q0

q1

qf

q0

q1

Next state

idea to have a start state as well

To make sure the ε is not accepted , it is a good

Q2. Given G1 = 〈 V1, Σ, S1, P1 〉 and G2 = 〈 V2, Σ, S2, P2 〉 we construct G1∪2〈 V1∪2, Σ, S1∪2 〉 as follows

V1∪2 = V1 ∪ V2 ∪ {S1∪2}
P1∪2 = {S1∪2 −→ S1|S2} ∪ P1 ∪ P2

G12 = 〈 V12, Σ, S12, P12 〉 as follows : Intuitively we generate L (G1) and then begin to generate L (G2)

appended to it. So it would suffice get the desired language. However since this production is not right
linear we need to distribute the “appendage” S2 to all the terminal productions of P1. Hence

P12 = {A1 −→ x1S2 | A1 −→ x1 ∈ P, x1 ∈ Σ⋆} ∪ P2

with V12 = V1 ∪ V2 and S12 ≡ S1.

Let G = 〈 V, Σ, S, P 〉 be aright linear grammar. We construct G⋆ = 〈 V⋆, Σ, S⋆, P⋆ 〉 as follows .

P⋆ = {S⋆ −→ ε | S}∪
{A −→ xS⋆ | A −→ x ∈ P , x ∈ Σ⋆}∪
{A −→ xB | A −→ xB ∈ P , x ∈ Σ⋆}

where V⋆ = V ∪ {S⋆}.

Since for right linear grammars all sentential forms generated are of the form ⇒ xA where x ∈ Σ⋆ and
A ∈ V , there is always at most one nonterminal at the end of a sentential form. So there is no danger of
having forms such as xAS2yS2.

42

qfqs

q1

q0

0

@

1

1

0

1

A

0

@

0

0

0

1

A

0

@

1

1

0

1

A

0

@

0

0

1

1

A

0

@

0

0

1

1

A

0

@

0

1

0

1

A

0

@

1

0

0

1

A

0

@

1

1

1

1

A

S

0

@

1

0

1

1

A

0

@

1

1

0

1

A

0

@

1

0

1

1

A

0

@

0

0

0

1

A

S

0

@

0

0

0

1

A

S

0

@

1

0

1

1

A

0

@

0

0

1

1

A

0

@

1

0

0

1

A

0

@

1
1
1

1

A

0

@

0

1

0

1

A , ,
,

, ,

, ,

, , ,

, , ,
Σ

generate any carry.

0

@

an

bn

cn

1

Ashould not

q1 can’t be a final

state because the

carry it carries cannot

be consumed. Hence

Q3 A = {0000wwR | w ∈ Σ⋆}. To show that A is not regular we prove as challenger that for any m > 0
chosen by the defender,the challenger has a winning strategy.

DEFENDER : Assume m > 0 is chosen.
CHALLENGER : Choose y ∈ Σ⋆ such that |y| > m.

Hence x = yyR ∈ A chosen with |x| > 2m.

DEFENDER : Since defender decomposes x into 3 parts u, v, w with v 6= ε and |uv| ≤ m, any decompo-
sition of the defender such that x = yyR = uvw necessarily decomposes y into 4 parts y = uvz. Hence

x = yyR = uvzzRvRuR and w = zzRvRuR.

CHALLENGER : Choose k = 2 with
xR = x2 = uv2w = uvvw

= uuvzzRvRuR

= uvvz(vz)RuR 6∈ A.

Note : x = αβ
⇔ xR = βRαR

Hence A is not regular.

Note that A is not regular only if |Σ| > 1

If |Σ| = 1 i.e. Σ = {a} then A = {a2n | n ≥ 0} which is regular.
Othersolutions involve choosing a 6= b and x = ambb am and proceeding with the argument.

Q4 It is very difficult to give anything except an (inequational) characterization of r ‖ s which we give
below starting from structural rules and chosing under commutatively fboxr ‖ s = s ‖ r
φ ‖ s = φ
ε ‖ s = s
a.r′ ‖ s = a.(r′ ‖ s) + s ‖ (a.r′)
(r1 + r2) ‖ s = r1 ‖ s + r2 ‖ s
r⋆ ‖ s = s + (r1.r2) ‖ s
finally we have the rule

r1.r2 ≤ ⇒ (r1.r2) ‖ s ≤ s

and r1.r2 ≥ r ⇒ (r1.r2) ‖ s ≥ r ‖ s .

43

where ≤ is the partial order on regular expressions induced by the inequation

r ≤ r + s

and ≥ is ≤−1.

0.1 AMBIGUITY & PARSING

We have stated that the grammar

S −→ SS | aSb | ε

is ambiguous. For example the sentence abab has two possible derivation trees.

S

a S b

a b a

S

S S

S

ε
S S

εε

S

S

S

S
S

S

S Sa b

b

a

b a
ε

ε ε

b

The ambiguity in this case has to do with now we group “chunks” of balanced parethesis where a “chuck”
is a maximal substring of the form akbk. Since catenation is associative there are different ways of group-
ing the chunks into sequences of chunks — either (ab ab)ab or ab(ab ab). In this particular case we may
resolve the ambiguity by choosing a “regular” to denote a chunk and use it to generate tail recursive
sequences of chunks as follows.

S −→ ε | CS
C −→ aSb

↑
Wthin each chunks there may be sequences too !

With this grammar the sequence “ababdb” has only once derivation tree as follows.

S

C

a C

S

C
S

a C

ε

C

a C

ε

b

b

b

This new variable with a
“determinishing” effect adds
extra control.

S

ε

ε

44

The language generated by there grammars is BP . Suppose we need to generate BP+ = BP − {ε}. We
could proceed as follows.

S −→ C | CS
C −→ ab | aSb.

Exercise

1. Prove that these two grammars generate BP+.

2. How do you show that this grammar is unambiguous ?

Parsing & Membership

A crucial decision problem in compilers is the question of “whether a given string x ∈ Σ⋆ belongs to
L (G)” for a grammar. This is the membership problem which gets solved automatically if there exists
an algorithms to determine “whether there exists a derivation tree for x” or equivalently “whether there
exists a derivation S ⇒⋆ x” equivalently “whether there exists a sequence of production applications
which will derive x from S”. This is called a “parse”.
There exists an exhaustive method of determining whether there is a parse of x ∈ Σ⋆.

Definition 20. Given a CFG G, a production A −→ ε is called a null production, and any production
of the form. A −→ B for A, B ∈ V is called a unit production2. A CEG which has no null productions
is called a positive CFG. A positive CFG which has no unit productions is called a branching CFG.

Facts

1. Every production of a positive CFG is length non-decreasing i.e. A −→ α ∈ (V ∪ Σ)+ implies
|α| ≥ 1. Hence for any derivation S ⇒⋆ αi ⇒ αi+1 it guaranteed that |αi| ≤ |αi+1|.

2. In a branching CFG every production except terminal ones is strictly length increasing. Hence in
any derivation.

S ⇒⋆ αi ⇒i+1⇒ . . .

|αi| = |αi+1| iff αi+1 is obtained from αi by appliction

of a length-preserving terminal production.

|αi| < |αi+1| iff αi+1 is obtained from αi by appliction

of a length-increasing production.

Theorem 21. If G is a branching CFG then the parsing problem for G is solvable i.e. There exists an
algorithm which for any x ∈ Σ⋆ can decide membership and if x ∈ L (G) it produces a parse of x.

Proof.

Claim 16. For each steps αi ⇒ αi+1 in a derivation either |αi| < |αi+1| or the number of terminal
symbols in αi is less than the number of terminal symbols in αi+1.

Claim 17. Because of claim 1 ,the number of steps in any derivation S ⇒⋆ x is at most 2|x|.

Claim 18. There are only a finite number of leftmost derivations of any given length

2a terminal production is one of the form A −→ a.

45

Proof. In each derivation steps of a leftmost from a given sentential from αi there are atmost |P | different
αi+1, since only one of the productions may be applied to a leftmost non-terminal in αi to obtain αi+1.
Hence any derivation

S ⇒ α1 ⇒ . . . αm

allows for at most |P | possibilities for α1 and for each possibilty α1, there are at most |P | possibities
of α2, which implies there are only |P |2 different leftmost derivation. Proceeding in this fashion for any
partial derivation of length k. there are at most |P |k different possibilities.

Exhaustively enumerate all partial derivations of length ≤ 2|x|. x ∈ L (G) iff x is the string generated
by one of the derivations and if so the leftmost derivation that generates x also yields a parse of x in the
grammar.

The previous theorem indicates that the parsing problem for general CFG would be solvable provided

(i) it is possible to eliminate unit productions and
(ii) it is possible to isolate ε productions and transform the grammar into a branching grammar. In effect
we would like to prove the following theorems.

Theorem 22. A language A ⊆ Σ⋆ is context-free iff there is a positive grammar G such that L (G) =
A − {ε}. Moreover any CFG G may be transformed into a positive CFG, G+ such that L (G+) =
L (G) − {ε}.

Theorem 23. Any positive context-free grammar may be transformed into an equivalent branching
context-free grammar.

Transformations of CFGs

The substitution Rule. Let G = 〈V, Σ, S, P 〉 be a CFG.

Lemma 14. If A −→ αBβ ∈ P for A 6= B and B −→ Γ1 | . . . | Γ are all productions of B. Then

Ĝ = 〈V, Σ, S, P̂ 〉 where P̂ = P − {A −→ αBβ} ∪ {A −→ αΓiβ | 1 ≤ i ≤ k} is an equivalent grammar.

Proof. Consider any derivation in G such that

S ⇒G ⋆ρAσ ⇒G ραBβσ ⇒G . . . ⇒G τBΘ ⇒G τΓiΘ ⇒ . . .

where ρα ⇒ ⋆τ and βρ ⇒ ⋆Θ. A corresponding derivation in Ĝ exists with

S ⇒
bG

⋆ ρAσ ⇒ ραΓiβσ ⇒ . . . ⇒ τΓiΘ ⇒ . . .

Since ρα ⇒ ⋆τ and βσ ⇒ ⋆Θ. Hence

S ⇒G ⋆ x ⇒ S ⇒G ⋆ x. i.e. L (G) ⊆ L (Ĝ)

Similarly for any derivation in Ĝ such that

S ⇒
bG

⋆ ρAσ ⇒
bG

ραΓiβσ ⇒
bG

. . .

there exists a corresponding derivation

S ⇒G ⋆ ρAσ ⇒ ραBβσ ⇒ ραΓiβρ ⇒ . . .

Hence S ⇒
bG

⋆ x ⇒ S ⇒G ⋆ x i.e. L (Ĝ) ⊆ L (G).

46

Example. G : S −→ ε | cs, c −→ aSb

Ĝ : S −→ ε | aSbS
As a converse of the substitution rule we could have a factoring rule which allows a rule A −→ αβΓ ∈ P
to be replaced by A −→ α × Γ and a new rule with X 6∈ V introduced as X −→ β.
Factoring allows us to transform the grammar Ĝ : S −→ ε|aSbS to the grammar G : S −→ ε|CS −→ aSb

Removal of Useless productions

Definition 21. a variable A ∈ V is useful iff

∃x ∈ L (G) : S ⇒ ⋆ αAβ ⇒ ⋆ x

otherwise a variable is called useless3. A production is useless if it involves a useless variable (either on
the LHS or in the RHS).

Example. S −→ A , A −→ aA | ε , B −→ bA. Here B is a useless variable and B −→ bA is a useless
production.

Theorem 24. Let G = 〈 V, Σ, S, P 〉 be a CFG. There exists an equivalent CFG , Ĝ = 〈V̂ , Σ̂, S, P̂ 〉
which contains no useless productions.

Theorem 25. There exists an algorithm to construct V1 ⊆ V such that V1 = {A ∈ V | A ⇒ ⋆x ∈ Σ⋆}.

3A variable is useless if either it can’t be reached from S or it can’t produce a terminal string

47

Algorithm 1

V1 old := φ; V1 := {A ∈ V | ∃x ∈ Σ⋆ : A −→ x ∈ P}

INV : ∀A ∈ V1 : A ⇒ ⋆x for some x ∈ Σ⋆

while V1 old 6= V1 do

{
V1 old : V1 ;
V1 := V1 ∪ {A ∈ V | ∃ A −→ α ∈ P : variable(α) ⊆ V1 }
P1 := { A −→ α ∈ P | symbols (A −→ α) ⊆ V1 ∪ Σ }
}

end while

Claim 19. There exists an algorithm to construct V̂ ⊆ V1 such that V̂ = { A ∈ V1 | S ⇒ ⋆ . . .A . . . }.

Algorithm 2

V̂old := φ; V̂1 := {A ∈ V1 | S −→ . . . A · · · ∈ P1}

while V̂old 6= V̂ do

V̂old := V̂
{
foreach B ∈ V1

V̂ := V̂ ∪ {B ∈ V1 | ∃ A ∈ V̂ : ∃ A −→ . . . B · · · ∈ P1 }

P̂ := { A −→ α ∈ P1 | symbols (A −→ α) ⊆ V̂ ∪ Σ }
}

end while

It is clear that V̂ consists of only useful variables and P̂ only useful productions from the grammar. It is
also possible to extend the algorithms to construct Σ, and Σ̂ which gives only the useful terminal symbols

PROOF OF UNAMBIGUITY

To prove that the grammar

S −→ ε | CS C −→ aSb

is unambiguous

C ⇒⋆ x ⇒ #a(x) = #b(x) ∧

∀y 4 x : #a(y) ≥ #b(y)

S ⇒⋆ x ⇒ #a(x) = #b(x) ∧

∀y 4 x : #a(y) ≥ #b(y)

By the substitution lemma

48

G : S −→ ε|aSbS

Proof by contradiction. Assume L (G) is ambiguous.
⇒ ∃ ∈ L (G) : x has two distinct leftmost derivations.

Let x ∈ L (G) be the smallest length word that is ambiguous ⇒ x 6= ε

i.e. ∀y ∈ L (G) : |y| < |x| ⇒ y has a unique leftmost derivation
x 6= ε ⇒ S ⇒ aSbS ⇒⋆ aubv = x where |u| < |x| and |v| < x.
But by IH S ⇒⋆ u and S ⇒⋆ v both have unique leftmost derivation.
For allm derivation of x, ε 6= x ∈ L (G) there is a unique starting point viz.

S ⇒ aSbS.

Since x has ≤ two leftmost derivations and both derivations come from aSbS , there must exists u′, v′

such , u′, v, ∈ L G

x = au′bv′ = aubv

but u′ 6= u

Claim 20. u 6= u′ ⇒ u ≺ u′ or u′ ≺ u
Facts. u, u′, v, v′ ∈ L (G)

Proof. u 6= u′ ⇒ v 6= v′. Since
x = aubv = au′bv′

⇒ ubv = u′bv′

WLOG assume u ≺ u′

⇒ u′ = uy with |y| > 0.(y 6= ε)
⇒ ubv = uybv′

⇒ bv = ybv′

⇒ y(1) = b ∧ y = bz for some |z| ≥ 0

But this is a contradication.
Since y 6= ε, y ∈ L (G) ⇒ y = ay′

Hence the assumption u ≺ u′ is false. Similarly we may prove that the assumption u′ ≺ u is also false.

Definition 22. Any production of the A −→ ε is a null production and a variable A ∈ V is called nullable
if A ⇒⋆ ε.
Fact. A −→ ε implies A is nullable.

Lemma 15. There exists an algorithm to construct the set of all nullable variables.

Proof.

Lemma 16. There exists an algorithm to transform a given CFG , G = 〈 V, Σ, S, P 〉 into a positive
CFG , G+ = 〈 V, Σ, S, P+ 〉 such that L (G+) = L (G) − {ε}.

Proof.

Claim 21. L (G+) ⊆ L (G)

Claim 22. For any A ∈ V , if A ⇒⋆
G+ x 6= ε then A ⇒⋆

G+ x

49

Algorithm 3

VN old := φ ;
VN := {A ∈ V | A −→ ε ∈ P} ;
while VN old 6= VN do

{
VN old : VN ;
foreach A −→ B1 . . . Bk ∈ P : {B1, . . . , bk} ⊆ VN old do

{VN : VN ∪ {A}}
}

end while

Algorithm 4

1. Compute VN the set of all nullable variables.
2. P+

0 = P − {A −→ ε | A −→ ε ∈ P} ;
foreach A −→ α ∈ P+

0 : α = αB1α1B2 . . . αn−1Bnαn ∧
variables(α0α1 . . . αn) ∩ VN = φ ∧

∀i : 1 ≤ i ≤ k : Bi ∈ VN do

{
foreach sequence s : {1, . . . , b} −→ {0, 1} :

P+ := P+
0 ∪ {A −→ αs | s : {1, . . . , n} −→ {0, 1}}

where the sequnce s determines which variable occurrences from α must be deleted to obtain αs.
}

Proof. By induction on the length of the derivation A ⇒⋆
G x.

Theorem 26. A language A ⊆ Σ⋆ is context-free iff there exists a positive context-free grammar G+ =
〈 V, Σ, S, P+ 〉 with L (G+) = A − {ε}.

Proof. (⇐) If L (G+) = A − {ε} then G = 〈 V, Σ, S, P+ ∪ {S −→ ε}4 〉
(⇒) from the previous lemma.

Unit productions

Definition 23. Any production of the form A −→ B , A, B ∈ V is called a unit production.

Fact. A positive grammar with no unit productions is a braching grammar.

Theorem 27. Let G+ = 〈 V, Σ, S, P+ 〉 be a positive CFG. Then there exists a branching grammar

Ĝ = 〈 V, Σ, S, P̂ 〉 which generates the same language.

Proof. Clearly G+
1 = 〈 V, Σ, S, P1+ 〉 with

P+
1 = P+ − {A −→ A | A ∈ V }

generates the same language as G+.
Consider all unit productions A −→ B ∈ P+

1 with A 6= B. Now construct a dependency graph to find all
A 6= B such that A ⇒⋆ B.

4This would lead to trouble with aoccuring on the RHS of a production.000

50

Let P̂ = {A −→ α

∣∣∣∣ |α| ≥ 1, α 6∈ V } ∪

{A −→ Γ1|Γ2| . . . |Γk | B −→ Γ1 . . . |Γk in P̂}.
↑

there are the only rules of B in P̂

Claim 23. L (Ĝ) = L (G+).

Proof. Follows from the substitution lemma

Example 1. S −→ Aa | B
B −→ A | bb
A −→ a | bc | B

S B

A

S ⇒
⋆ A

B ⇒
⋆ A

S ⇒
⋆ B

A ⇒
⋆ B

P̂ = {S −→ Aa , B −→ bb , A −→ a|bc} ∪
{S −→ a|bc|bb , A −→ bb , B −→ a|bc}.

Note that the removal of unit productions has made B useless.

Theorem 28. For every CFG , G = 〈V, Σ, S, P 〉 there exists a branching CFG , Ĝ = 〈 V̂ , Σ, S, P̂ 〉 such

that L (Ĝ) = L (G)−{ε} and Ĝ has no useless productions , no null productions and no unit productions.

Proof. We note the following properties of our transformations.

1. The removal of ε-productions may create unit productions.

2. The removal of unit - productions may create useless productions.

However , it is also true that

1. The removal of unit productions does not create any null productions.

2. The removal of useless productions does not create any fresh null or unit productions.

Hence the following algorithm proves the theorem.

Algorithm 5

1: Remove all ε-productions (to obtain a positive grammar G+)

2: Remove all unit productions (to obtain a branching grammar Ĝ1)

3: Remove all useless productions (to obtain a branching grammar Ĝ1)

51

NORMAL FORMS

Definition 24. A CFG is in Chomsky Normal form (CNF) if all productions are of the form

A −→ BC or A −→ a

where A, B, C ∈ V and a ∈ Σ. It is in Greibach Normal form (GNF) if each its productions is of the
form

A −→ aB1B2 . . . Bk

for some k ≥ 0 , A, B1, B2, . . . , Bk ∈ V .

Fact

1. Every grammar in CNF or GNF is positive and branching. Hence these normal forms do not
allow for generation of ε or unit productions.

Theorem 29. Every branching CFG , G may be transformed into an equivalent one in CNF .

Proof. Since G is branching it has

(i) no null productions

and (ii) no unit productions

}
Even if it has we may
assume wlog that they
have been removed.

The construction of the equivalent CFG , Ĝ in CNF proceeds as follows.

Step 1. Let G = 〈 V, Σ, S, P 〉 be a branching CFG. Let G′ = 〈 V ′, Σ, S, P ′ 〉 be a CFG obtained from
G as follows.
(i) ∀a ∈ Σ , let Xa be a new nonterminal (Xa 6∈ V)
V ′ = V ∪ XΣ where XΣ = {Xa|a ∈ Σ}.
∀a ∈ Σ : Xa −→ a ∈ P ′

Claim 24. Every production in P ′ is of the form

A −→ a or A −→ B1B2 . . . Bk , k > 1

and L (G′) = L (G).

Step 2. Obtain G′′ = 〈 V ′′, Σ, S, P ′′ 〉 from G′ as follows :

Proof. Let P1
′′ = {A −→ a|A −→ a ∈ P ′}.

We construct P2
′′ as follows from P ′ − P1

′′.
Every production in P ′ − P1

′′ is of the form
A −→ B1B2 . . . Bk , K > 1.

Introduce new variable C2, . . . , Ck−1 and let

P̂2 contain the following productions
A −→ B1C2

C2 −→ B2C3

...

Ck−2 −→ Bk−2Bk−1

Ck−1 −→ Bk−1Bk






Repeat this for every
such production in P ′

V ′′ = V ′ ∪ {C|C introduced in this step}
P ′′ = P1

′′ ∪ P2
′′

Claim 25. G′′ = 〈 V ′′, Σ, S, P ′′ 〉 is in CNF and L (G′′) = L (G′)

Step 3. Obtain Ĝ from G′′ by removing useless productions.

52

Claim 26. L (Ĝ) = L (G′′) = L (G′) = L (G)

Greibach Normal form

Definition 25. A production is left-recursive if it is of the form A −→ Aα.

Lemma 17. (left-recursive removal). Let G = 〈 V, Σ, S, P 〉 be a CFG and let A −→ Aα1| . . . |Aαr

be all the left recursive productions of A and A −→ β1| . . . |βs be all the other productions of A. Let
G′ = 〈 V ∪ {B}, Σ, S, P ′ 〉 be a CFG obtained from G by adding a new variable B and replacing all the
left-recursive productions of A by the following productions.

A −→ βB | . . . | βsB.
and adding the following productions for B

B −→ α1 . . . | αr

B −→ α1B | . . . |αrB.

Then L (G′) = L (G).

Proof. Consider any leftmost derivation of A in G which terminal in a sentential form not containing A.
A ⇒ Aαi1 ⇒ Aαi2αi1 ⇒ . . . ⇒ Aαim

. . . αi1 ⇒ βjαim
. . . αi1 .

where 1 ≤ j ≤ s and 1 ≤ i1, i2, . . . , im ≤ r.
This derivation may be replaced by the following derivation in G′.

A ⇒ βjB ⇒ βjαmB ⇒ βjαim
αim−1

B ⇒ . . . ⇒ βjαim
. . . αi2B ⇒ βjαim

. . . αi2αi1

(which is not leftmost but is still a derivation). The reverse transformation may also be made. Hence
L (G) = L (G′)

NORMAL FORMS (contd.)

Lemma 18. Any CFG in CFG may be transformed into an equivalent CFG in CNF containing no
left-recursive productions.

Proof. Let G be a grammar in CNF . The set of production of a variable A may be divided into 3 classes.
class 1 Terminal productions of the form A −→ a, A ∈ Σ.
class 2 Non-left-recursive non terminal productions of the form A −→ BC where A 6= B, A, B, C ∈ V
class 3 left-recusive productions of the form

A −→ AD where A, D ∈ V

Let A −→ AD1| . . . |ADp be all the left recursive productions of A ,
A −→ B1C1| . . . |BnCn be all the non-left-recursive productions

and A −→ a1| . . . |am be all the terminal productions

The removal of left-recursion involves adding a new variable E 6∈ V , replacing the left-recursive produc-
tions of A by
A −→ B1C1E | . . . | BnCnE
|a1E| . . . |amE
and adding the following productions for E

E −→ D1| . . . |Dp (1)

|D1E| . . . |DpE (2)

and adding the following productions for E

53

E −→ D1| . . . |Dp (3)

|D1E| . . . |amE (4)

Claim 27. Let G′ = 〈V ′, Σ, S, P ′〉 where V ′ = V ∪{E} and P ′ = (P − {A −→ AD1| . . . |ADp}) ∪ 1©∪ 2©∪ 3©∪ 4©
then L (G′) = L (G).

Claim 28. G′ may be transformed into a grammar Ĝ in CNF such that L (G′) = L (Ĝ).

Proof. Since G′ was derived from a CNF G, it is only necessary to transform the productions of the
forms 1©, 2©,tc3, 4© into CNF .
1© Replace A −→ B1C1E | . . . | BnCnE by

A −→ B1E1| . . . |BnEn —– 1′

where E1, . . . , En are new variable and add the productions

E1 −→ C1E

En −→ CnE

}
—– 1′′

2© Since G was already in CNF there exist variables Xa ∈ V for each a ∈ Σ and the productions
Xa −→ a for each a ∈ Σ in G.

Replace all the productions A −→ Xa1
E | . . . | Xam

E —– 2′

3© Since D1, . . . , Dm are variables belonging to the original CNF G , their productions in G

D1 −→ δ11 | . . . | δ1k1

...
Dm −→ δm1 | . . . | δmkm

are already in the required form for a CNF . Hence by replacing the productions E −→ D1 | . . . | Dp by
the set of productions.

E1 −→ δ11| . . . |δ1k1

|

...

|δm1
| . . . |δmkm






—– 1′′

we obtain the productions 3© of E to conform to CNF .

4© These productions already conform to the CNF .
Hence Ĝ = 〈 V̂ , Σ, S, P̂ 〉 with

V̂ = V ′ ∪ {E1, . . . , En}.

P̂ = (P − {A −→ AD1| . . . |ADp}) ∪ 1′ ∪ 1′′ ∪ 2′ ∪ 3′ ∪ 4© is a grammar in CNF which is equivalent to
G′.

Definition 26. A CFG G has the increasing index property(IIP) if there exists a total ordering < on
the variables such that for every production of the form A −→ Bα for A, B ∈ V , A < B. A production
satisfies the IIP if it is either of the form α −→ aα for a ∈ Σ or it is of the form A −→ Bα with B ∈ V
and A < B.

Lemma 19. Let G be a CFG in CFG with no left recursive productions. These exists an equivalent
grammar Ĝ in CNF and an ordering on the variables of Ĝ such that Ĝ such that G has the IIP.

54

Proof. Since G is in CNF we may assume without loss of generality that for every a ∈ Σ (which occurs
in a sentence of L (g)) there exists an unique associated variable Xa and a unique production Xa −→ a.
Even if there is a variable Xab (with Xab −→ a|b) which has more then 1 terminal production , it may
be split into as many different variables as the number of terminals. Correspondingly all occurences of
Xab in any production may be spilt into two productions (one for each terminal).

Claim 29. V may be partitioned into two disjoint sets
V = N ∪ XΣ

where XΣ = Xa|a ∈ Σ and N = V − XΣ.

The ordering: Define a total ordering that satisfies the condition.

∀A ∈ N. ∀Xa ∈ XΣ : A < Xa.

Transforming G : If G already satistfies the IIP there is nothing to prove. Otherwise assume for conve-
nience that V = {A1, . . . , Am} are all the varibles of V with index(Ai) = i and ordered by the usual < on
integers.
Let k, 1 ≤ k ≤ m be the smallest index which violates the IIP ,i.e there exists a production.

Ak −→ AjAl , k > j —— 1©

and ∀i : 1 ≤ i < k : all the productions of Ai have the IIP.
In particular, all the productions of Aj viz.

PROCESS
I

Aj −→ AlAl′1 | . . . |AlmAl′m

|a1| . . . |aq

have IIP i.e. j < l1, l2, . . . , lm
Repalce Ar −→ AjAl by the productions

Ak −→ Al1Al′1Al | . . . | AlmAl′mAl

| a1Al | . . . | aqAl

—— 2©

Repeat PROCESS I for all Ak-productions that violate IIP.

case k > min(l1, . . . , lm). However since j < min(l1, . . . , lm) we have

j < min(l1, . . . , lm) < k ⇒ k − j > k − min(l1, . . . , lm). which implies PROCESS I has reduced the
value of.

Repeat process I as many times as necessary till either all productions of Ak have the IIP or there are
some left-recursive productions of Ak.

Case : All productions of Ak have IIP. Then

Claim 30. The smallest index that violates IIP in the grammar is > k

Case. There are left-recursive productions of Ak but all non-left-recursive productions satisfy IIP.

55

Remove left-recursion in each case by introducing a new varibale B and extend the ordering < so that
B < any existing variable of V .

Claim 31. The smallest index of the new grammar that may violate IIP is > k.
However the grammar may not be in CNF . The following case takes this into account

Case k < l1, . . . , lm, Then the smallest index that violates IIP is > k. However the grammar is no
longer in CNF . Let the new productions of Ak be

Ak −→ Aα1
| . . . | Alnαn where |α1| = |α2| = · · · = |αn| = 2

|a1Al1 | . . . |apAlp and ∀i : 1 ≤ i ≤ n : αi ∈ V 2.

Introduce n new variables B1, . . . , Bn and replace the above productions by

Ak −→ Al1B1 | . . . |AlnBn

| Xa1
Al1 | . . . |Xap

Alp

and add the new productions

B1 −→ α1

... where ∀i : 1 ≤ i ≤ n : αi ∈ V 2.
Bn −→ αn

Extend the total ordering < to include the new variables B1, . . . , Bn such that

∀i, j : Bi < Bj

Claim 32. The grammar obtained above is in CNF with the smallest index violating the IIP > k.
From the above two cases it follows that the diffence (m − k) reduces by the above processes. Hence the
above processes need to be repeated only at most (m− k) times to obtain an equivalent grammar in CNF
with the IIP

Theorem 30. (GNF) Every branching CFG may be transformed into an equivalent one in GNF .

Proof. WLOG we may assume that G is a CNF with the IIP. Let V = {A1, . . . , Am} be the variables
in increasing order of index in the total ordering.

Claim 33. Am has only terminal productions.

PROCESS 2
Replace every production of the form

B −→ AmC
with B −→ a1C | . . . | anC
wher Am −→ a1 | . . . | an are the only productions of Am

Claim 34. the highest indexed variable occuring as first symbol on the right hand side of any production
is Am−1.

Claim 35. Since there is no left recursion all the productions of Am−1 are of the form

Am−1 −→ a1α1 | . . . | apαp.

where α1, . . . , αp ∈ V .

56

Proof. The replacement of Am by terminal symbol all prod. implies all productions are either of the form

A −→ aβ where β ∈ V ⋆ , a ∈ Σ
or A −→ BC where A < B < Am.

PROCESS 3
By repeating PROCESS 2 for m − 1 we get that
the higest indexed variable occuring as the first
symbol on the RHS of every production is < m − 1.

This PROCESS 3 may be repeated (at most) m − 1 times to obtain a grammar in which every
production is of the form.

A −→ aα with α ∈ V ⋆

which is in GNF .

1 Pumping lemmas for linear & CFLs

1.1 Pumping Lemma for Linear Languages

A linear language is one which may be generated by a linear grammar i.e. a grammar which may have
both right-linear & left linear productions

Fact. Every linear grammar is also contxt-free with the proof of a pumping lemma for linear languages.
We will also show the strict containment of the linear languages within the class of CFLs




an

bn

cn




LΣ

RΣ

Theorem 31. Let A ⊆ Σ⋆ be an infinite linear language. Then there exists m > 0 such that any
x ∈ A, |x| ≥ m may be decomposed into z = tuvwx with

|tuwx| ≤ m
|uw| ≥ 1

such that for all i ≥ 0, tuivwix ∈ A.

In other words

A ⊆ Σ⋆ is linear
⇒ ∃ m > 0 : ∀z ∈ A : |z| ≥ m :

∃t, u, v, w, x : z = tuvwx ∧ |
︷ ︸︸ ︷
tuwx| ≤ m ∧ |uw| ≥ 1

∧ ∀k ≥ 0 : zk = tukvwkx ∈ A

57

Proof. Since the language is linear there exists a linear grammar gnerating it. As in the case of a CFG
we may use the same techniques to

(i) remove unit productions

(ii) remove ε-productions

}
transfer G into a positive
branching grammar.

(iii) transfer G to generate A − {ε}

The proof then proceeds as follows:

Consider a derivation tree as in the case of the lemma for CFLs. Since the derivation tree may be
arbitrarily deeep consider only the first and second occurences of the first variable A that repeats itself
in the derivation tree.
Since |V | is bounded it follows that the other variables which do not repeat can only produce only
bounded-length terminal strings t and x. Similarly between the two occurences of A there are only
bounded length strings u and w may be produced.
Choose m = |t| + |u| + |w| + |x|.
Finally u and w may be pumped as many times as we please to obtain derivations of

tukvwkx ∈ A − {ε}

2 The Pumping Lemma for CFLs

Theorem 32. Let A =⊆ Σ⋆ be an infinite CF language. There exists m > 0 such that for any z ∈ A
with |z| ≥ m, z may be decomposed into z = tuvwx with |uvw| ≤ m , |uw| ≥ 1 such that for any
k ≥ 0 , tukvwkx ∈ A.

In other words

A ⊆ Σ⋆ is an infinite CFL
⇒ ∃ m > 0 : ∀z ∈ A : |z| ≥ m :

∃t, w, x, v : z = tuvwx ∧ |uvw| ≤ m ∧ |uw| ≥ 1
∧ ∀k ≥ 0 : zk = tukvwkx ∈ A

Proof. Consider A − {ε}. Let be a CFG with
(i) L (G) = A − {ε}.

(ii) G has no unit productions

(iii) G has no ε-productions





Let G be a branching CFG
with L (G) = A − {ε}.

⇒ for every production A −→ α ∈ P

α ∈ Σ V |A| < |α|.

Let n = max{|α| | ∃A ∈ V : A −→ α ∈ P}.

⇒ Any z ∈ A − {ε} has a derivation of length ≥ |z|
n

. Since A − {ε} is infinite, there exists arbitrarily
long derivations and hence there exists derivation trees of arbitrary height.

We have the following derivation

58

t

w

A

S

A

u

x

v

Consider such a derivation tree of

there must be at least one variable that

sufficient depth. Since |V | < ∞ ,

repeats in the derivation tree.

Let A be the variable that repeats

alnog the path such that no other

variable repeats itself between the

occurences of A.

S ⇒⋆ tAx ⇒⋆ tuAwx ⇒⋆ tuvwx.

where t, u, v, w, x ∈ Σ⋆. Clearly A ⇒⋆ uAw, is a sub-derivation of the original derivation. We
may “pump” this derivation as many times as we want to obtain derivations of tukvwkx ∈ A−{ε}. Since
G has no unit productions and is positive it follows that |uw| ≥ 1 and we may choose m = |uvw| > 1.

3 Pumping lemma : Contrapositives

∀m > 0 : ∃z ∈ A : |z| ≥ m ∧ ∀u, v, w : z = uvw ∧ |uv| ≤ m ∧ |v| ≥ 1
⇒ ∃k ≥ 0 : zk = uvkw 6∈ A

⇒ A is not regular

∀m > 0 : ∃z ∈ A : |z| ≥ m ∧ ∀u, v, w, x : z = tuvwx ∧ |uvw| ≤ m ∧ |uw| ≥ 1
⇒ ∃k ≥ 0 : zk = tukvwkx 6∈ A

⇒ A is not a CFL

∀m > 0 : ∃z ∈ A : |z| ≥ m ∧ ∀t, u, v, w : z = tuvwx ∧ |tuwx| ≤ m ∧ |uw| ≥ 1
⇒ ∃k ≥ 0 : zk = tukvwkx 6∈ A

⇒ A is not linear

Examples

1. anbncn | n ≥ 0 is not CF . For any m > 0 chosen by D,C chooses ambmcm and does a case analysis.

BEST STRATEGY FOR D TO WIN

Pick a decomposition of ambmcm such that the string to be pumped viz uw satisfies

#a(uw) = #(uw) = #c(uw)

59

But that is impossible since that implies uvw = aibmci and |uvw| > m for i > 0 and |v| = m if
i = 0 we may use the b′s in v to ensure that

zk 6∈ {anbncn | n ≥ 0}.

2. {ww | w ∈ {a, b}⋆} is not CF . For any m > 0, C chooses ambmambm and do case analysis.

BEST STRATEGY FOR D TO WIN

Pick a decomposition of xx = ambmambm such that uvw contains the same length of string from
the left x as from the right.

Suppose defender chooses i > 0 with v = ε and u = bi and w = ai such that 2i ≤ m. Then it is
possible to find k > 1 with

zk = ambmm+i(k−1)amm+i(k−1)bm 6∈ {ww|w ∈ {a, b}+}

3. {an!|n ≥ 0} is not CF Use essentially some argument as for regular case since there is only one
terminal symbol.

4. {anbm|n = m2} is not CF . C chooses am2

bm.

5. {w ∈ {a, b}⋆ | #a(w) = b(w)} is not linear5 but is CF

since S −→ SS | aSb | bSa | ε generate it.

BEST STRATEGY FOR D TO WIN

Given z = amb2mam , DEFENDER is forced to choose tuvwx = ai for some i ≤ m, i > 0. Clearly
then challenger can choose k = 0 and ensure that #a(z0) 6= #b(z0) and |uw| ≤ 1. So defender loses

Using Brackets to remove amgiguity in CFGs

Let G = 〈 V, Γ, S, P 〉 be a CFG in CNF . Assume P consists of n rules of the form
A −→ BC , 1 ≤ i ≤ n

in addition to terminal productions of the form A −→ α, a ∈ Γ.

Define Gs = 〈 V, Γ ∪ Π, S, Ps 〉 where
Ps = {A −→ [i B]i C | A −→ BCis the i-th rule in P}.

∪ { A −→ a | A −→ a ∈ P }.

Example. Let G consist of the productions.
S −→ AB | BA , B −→ CC , A −→ a , C −→ a.

The string aaa ∈ L (G) has two derivation trees

5C chooses amb2mam

60

S

A B

C C C C

S

a aaa

a

A

a

B

The Chansky-Schutzenberger Theorem

Let Σ = Γ ∪ Π wher Π = { [i ,]i | 1 ≤ i ≤ n } is a collection of n pairs of parentheses of different kinds.
The language ≺ is generated by the following grammar

GPi






S −→ a , for each a ∈ Γ

S −→ [i S]i , for each i = 1, 2, . . . , n

S −→ SS | ε





GENERALIZATION
OF BP = PAR{a,b}(φ)

Lemma 20. ≺ is a CFL satisfying the following properties

1. Γ⋆ ⊆≺.

2. ∀x, y ∈≺: xy ∈≺ i.e ≺ is closed under catenation.

3. ∀x ∈ pr : ∀i : 1 ≤ i ≤ n : [i x]i ∈ ≺.

4. ∀x ≺:

x 6∈ 0000 ⇒ ∃u, v, w : ∃i : 1 ≤ i ≤ n :

u ∈ Γ⋆ ∧ u, w ∈≺ ∧

x = u[i v]iw.

Proof. 1,2,3 are obvious and so we prove only 4.
4.

Claim 36. x 6∈ Γ⋆ ⇒ |x| > 1 since there is at least one pair of parenthesis in x.

⇒ Any derivation of x begins with an application of one of the rules
S −→ [i S]i , 1 ≤ i ≤ n
S −→ SS.

We now proceed by induction assuming the result holds for all strings of length < |x|. i.e.

IH : ∀y ∈≺: |y| < |x| ⇒
[y 6∈ Γ ⇒ ∃r, s, t : ∃j : 1 ≤ j ≤ n :

r ∈ Γ⋆ ∧ s, t ∈≺ ∧
y = r[j S]j] t

61

Induction steps. Do an analysis of the first step of S ⇒⋆ x.

Case. S ⇒ [i S]i ⇒⋆ [i v]i = x where S ⇒⋆ v. The result then follows with u = ε = w.

Case. S ⇒ SS ⇒⋆ yz = x wher S ⇒⋆ y and S ⇒⋆ z. We may safely aSSUME Y 6= ε 6= z ,
otherwise it is possible to derive x without the first step S ⇒ SS. Hence 0 < |y| < |x| and 0 < |Z| < |x|.

Subcase. y ∈ Γ⋆. By the IH z = r[i s]it and x ∈ yr[i s]it with yr ∈ Γ⋆ , s, t ∈≺
Subcase. y 6∈ Γ⋆. By the IH y = r[i s]it and x ∈ r[i s]itz with r ∈ Γ⋆ , s, tz ∈≺

The modified grammar Gs has π = { (,), [′], , }. and the productions.

S −→ (A)B | [B]A , B −→ {C}C , A −→ a , C −→ a.
and the corresponding derivation trees generate different strings.

S

()

a

B

{

C

S

[B

a a

{ C C

A

a a

a

C }

A
]

}

[{a}a]a](a) {a}a

Moral : Bracketing may be used as a means to specify
the derivation tree which generates a string

Theorem 33. Let h : Γ ∪ Π −→ Γ ∪ {ε} be the homomorphism which maps every symbol of Γ to itself
and erases every bracket i.e. h([i) = ε = h(]i). Then

h(L (Gs)) = L (G)

Proof. Show by induction on the height of derivation trees that both languages have a 1-1 correspondence
on their derivation trees

Lemma 21. L (Gs) ⊆≺.

Proof. We prove the stonger result L (Gs) ⊆ {x|∃A ∈ V : A ⇒⋆ x} ⊆≺. By induction on the length of
derivations A ⇒⋆ x for any A ∈ V and x ∈ (Γ ∪ Π)⋆.

Basis. Clearly a terminal production has been applied.

Ind Steps. Otherwise A ⇒ [i B]i C ⇒⋆ [i v]iw = x and it follows that there exists smaller derivations
B ⇒⋆ v and C ⇒⋆ w and it is also clear that x is of the form u[i v]iw with u = ε, v, w ∈≺. By the

62

IH there exists derivations S ⇒⋆ v and S ⇒⋆ w in ≺. Hence we have S ⇒ SS ⇒ [i S]iS ⇒⋆ [i v]iw
in ≺

Definition 27. Let GR = 〈 V, Γ ∪ Pi, S, PR 〉 be the grammar with
PR = {A −→ a | A −→ a ∈ Ps} ∪ {A −→ [i B | ∃A −→ [iB]iC ∈ Ps} ∪
A −→ a]iC | A −→ a ∈ Ps, 1 ≤ i ≤ n ∧ ∃X −→ [i B]iC C Ps

Lemma 22. L (Gr) is regular

Proof. Since the productions are all obviously right linear , L (G′) is regular.

NOTE : Since GR is derived from Gs which in term is derived from G which is in CNF , it is clear that
∀A ∈ V : A 6 ⇒⋆ ε.

Lemma 23. We prove that for any A ∈ V , A ⇒
Gs

⋆ x ∈ (Γ∪Π)⋆ then A ⇒
G′

⋆ x by induction on the length

l of derivations in Gs.

Basis l = 1. Clearly a terminal production.
Ind Step. Let A ⇒

Gs

[i B]i ⇒⋆ x = [i v]iw Clearly B ⇒
GR

⋆ v and C ⇒
GR

⋆ w by the induction hypothesis.

The following derivation in GR then proves the required result. Clearly since v 6= ε, we may assume
v = ua for some a ∈ Γ.
Further there must be a productions in GR of the form there and ∀i : 1 ≤ i ≤ n : Xa −→ a]iC for each
A −→ [iB]iC ∈ Ps. Hence B ⇒

GR

v = ua would look like

B ⇒
GR

uXa ⇒ ua = v

We may instead use
B ⇒

GR

⋆ uXa ⇒
GR

ua]iC

to obtain the derivation
A ⇒

GR

[i B ⇒
GR

⋆ [i uXa ⇒
GR

[i ua]i C ⇒
GR

⋆ [i v]iw

Corollary 4. L (Gs) ⊆≺ ∩ L (GR)

Lemma 24. ≺ ∩ L (GR) ⊆ L (Gs)

Proof. Consider any derivation S ⇒
G′

⋆ x ∈≺. We need to prove that S ⇒
Gs

⋆ x. We proceed by complete

induction on the number of occurences of symbols from Π in x.(denoted #Π(x)).

Basis #Π(x) = 0. Clearly a terminal production which also exists in Gs.
Ind steps. Assume the result is true for all strings y ∈≺ ∪ L (GR) with #Π(y) < #Π(x) and let
#Π(y) ≥ 0. Then clearly

S ⇒
GR

[i B for some b ∈ V and 1 ≤ i ≤ n.

which implies x = [i v]iw by the properties of ≺.
Hence

S ⇒
GR

[i B ⇒
GR

⋆ [i uXa ⇒
GR

[i ua]iC ⇒
GR

⋆ [i v]iw

and by the induction hypothesis we have

S ⇒
Gs

[i B]iC ⇒
Gs

⋆ [i v]iw = x

Corollary 5. L (Gs) =≺ ∩ L (GR)

63

Corollary 6. Let G = 〈 V, Γ, S, P 〉 be a grammar in CNF . Then for a suitably chosen Π ∩ Γ = φ of
pairs of bracketing symbols,there exists a regular language R such that

L (G) = h(R ∩ L (Gs)).

Theorem 34. CHOMSKY − SCHUTZEENBERGER. A language L ⊆ Γ⋆ is context-free if and

only if there is a regular language R and a collection Π of matching bracket symbol pairs such that

L = h(R ∩ ≺)

Proof. (⇒) For any G in CNF with L (G) = L − ε, the previous corollary shows the result.
If ε ∈ L , then

L = h((R ∪ {ε}) ∩ ≺).

(⇒) Since ≺ is context-free ot follows that L is context-free , provided we can show that (i) the intersection
of regular and a CFL is a CFL and (ii) homomorphisms preseve CF − ness

Theorem 35. The family CFΣ is closed union,concatenation and ⋆-closure

Proof. Let G1 = 〈V1, Σ, S1, P1〉 and G2 = 〈V2, Σ, S2, P2〉 be CFGs generating A1, A2 ∈ C FΣ respectively.
Assume V1 ∩ V2 = φ
Union. Let G∪ = 〈 V∪, Σ, S∪, P∪ 〉 be defined as follows

V∪ = V1 ∪ V2 ∪ {S∪}
P∪ = P1 ∪ P2 ∪ {S∪ −→ S1|S2}.

Claim 37. L (G∪) = L (G1) ∪ L (G2) = A1 ∪ A2

Concatenation. Let G = 〈 V •, Σ, S•, P• 〉 be the grammar

V • = V1 ∪ V2 ∪ {S•} P• = P1 ∪ P2 ∪ {S• −→ S1S2}.

Claim 38. L (G•) = L (G1) • L (G2) = A1 • A2

⋆-closure. Let G⋆ = 〈 V⋆, Σ, S⋆, P⋆ 〉 where

V⋆ = V1 ∪ {S⋆} , P⋆ = P1 ∪ { S⋆ −→ ε|S1S⋆

Claim 39. L (G⋆) = L (G1)
⋆ = A⋆

1

PUSHDOWN AUTOMATA

Definition 28. A nondeterministic push-down automaton(NPDA)

N = 〈 Q, Σ, Γ, δ, q0,⊥, F 〉
Q is a finite set of states.
Σ is a finite input alphabet.
Γ is a finite stack alphabet.
δ ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ⋆) is a finite transition relation .

= Q × (Σ ∪ {ε})× Γ −→f 2Q×Γ⋆

q0 ∈ Q is the start state.
⊥ ∈ Γ is the initial stack symbol.(⊥ 6∈ Σ).
F ⊆ Q is the set of final states.

Note

N = 〈 Q, Σ, Γ, δ, q0,⊥, F 〉
↑

64

Finite State

Control

A

⊥

Stack

Input

P

a

((p, a,A), (q, β)) ∈ δ

β = B1 . . . Bk ⇒

↑

machine is in state p next
input symbol is a and top
of stack is A

↑

B1

...

Bk

machine goes into state q
and replaces the A on the
stack by β

step.
this is an atomic

needed only to define the initial configuration

Q × (Σ ∪ {ε}) × Γ −→f 2Q×Γ⋆

↑

no move is possible if the stack is empty

Configurations. A configuration of the machine is a 3-tuple 〈 q, x, α 〉 where q ∈ Q, x is the rest of the

input to be consumed and α is the contents of the stack (α = A1 . . . Ak ⇒

A1

...
Ak

(p, ay, Aβ) −→
N

⋆ (q, y, αβ) if ((p, a, A), (q, α)) ∈ δ

(p, ay, Aβ) −→
N

⋆ (q, y, αβ) if ((p, ε, A), (q, α)) ∈ δ

Acceptance. There are two notions of acceptance. Actually there are two kinds of NPDAs

1. Acceptance by empty stack.(E-acceptance)

65

L (NE) = {x ∈ Σ⋆|(q0, x,⊥) −−→
NE

⋆ (q, ε, ε)} −→ Then F is irrelevent and may be taken to be φ

2. Acceptance by final state(F -acceptance)

L (N) = {x ∈ Σ⋆ | ∃γ ∈ Γ⋆ : (q0, x,⊥) −−→
NF

⋆ (qf , ε, γ), qF ∈ F}

Note. But in both cases the input should have been completely consumed.

Example 1. Balanced parantheses. Acceptance by empty atack

Q = {q} ((q, [,⊥), (q, [⊥))

Σ = {[,]} ((q, [, [), (q, [[))

Γ = {⊥, [} ((q,], [), (q, ε))

((q, ε,⊥), (q, ε))





deterministic

Example 2. A = {w ∈ {a, b}⋆ | #a(w) = #b(w)}

Q = {q}
Σ {a, b}
Γ = {A6, B7,⊥}

Note

1. A indicates there are more a′s than b′s

2. B indicates there are more b′s than a′s






((q, ε,⊥), (q, ε))

((q, a,⊥), (q, A))

((q, ε,⊥), (q, ε))

((q, b,⊥), (q, B))

((q, a, A), (q, AA))

((q, a, B), (q, ε))

((q, b, A), (q, ε))

((q, b,⊥), (q, BB))






At any stage the stack contains

(i) only A′s or

(ii) only B′ or

(iii) neither A′s nor B′s

The stack would not
contain a mix
of A′s & B′s

Example 3. { wwr | w ∈ {a, b}⋆ }

Q = { qL
8, qR } ∪ {qp

9}

Σ = {a, b}

Γ = {a, b,⊥}

Acceptances
by empty
stack

Note

1. qL is for start state.

66

2. qp is for acceptace by final state.

((qL, ε,⊥), (qR,⊥)) −→ Candidates for the middle of the string.

((qL, a,⊥), (qL, a⊥))
NONDETERMINISTIC
ր տ

((qL, a, a), (qL, aa)) ((qL, a, a), (qR,⊥))

((qL, a, b), (qL, ab))

((qL, b,⊥), (qL, b⊥))

((qL, b, a), (qL, ba))
((qL, b, b), (qL, bb))

((qL, a, a), (qR, ε))
↑

Candidates for the middle of the string.

↓
((qL, b, b), (qR, ε))

((qR, a, a), (qR, ε))

((qR, b, b), (qR, ε))






This does not directly allow acceptance by
final state since then the string ‘abb′

could be accepted

((qR, ε,⊥), (qR, ε))︸ ︷︷ ︸
This transition allows acceptance by empty stack too.

Alternatively add a final state qF

with the rule
((qR, ε,⊥), (qF ,⊥)).

Acceptances : E vs F

Note. When a NPDA accepts by empty stack,then F is irrelevant and may safely be taken to be φ.

Theorem 36. The two acceptances are equivalent i.e. for every NE there exists a NF with LE(NE) =
LF (NF) and vice-versa.

Proof. Let N = 〈 Q, Σ, Γ, δ, q0,⊥, F 〉 be any NPDA either E-type or F -type. Let s and t be two new
states not in Q. and let 4 be a new stack symbol. Now consider

N ′ = 〈 Q ∪ {s, t}, Σ, Γ ∪ {4}, δ′, s ⊥, {t} 〉

such that δ′ = δ ∪

Claim 40. N ′ accepts the same language by both acceptances.

Proof. Outline

(i) N ′ cannot reach its final state unless it has consumed all its input.
(ii) It cannot empty it stack (i.e. 4 cannot be popped) unless it first reaches its final state.
(iii) Once it has reached its final state,it can only empty its stack.

Hence LE = LF (N ′) = L N ′.

Claim 41. LE(N ′) ⊆ LE(N) = L (N ′) if N is of type NE

and LE(N ′) ⊆ LF (N) if N is of type NF .

67

Proof. Suppose x ∈ L (N ′). Then for some n ≥ 0.
(s, x 4) −−−→

N ′

(q0, x,⊥ 4) −−−→
N ′

n

︸ ︷︷ ︸
(q, y, γ, 4) −−−→

N ′

(t, y, γ 4) −−−→
N ′

⋆ (t, ε, ε).

Since y = ε ⇓
(q0, x,⊥) −−−→

N

n (q, ε, γ)

where q ∈ G.
Now consider (q, ε, γ 4) −−−→

N ′

(t, ε, γ 4)

Case N by empty stack. Then G = Q and △ = {4}.
The transition (q, ε, γ 4) −−−→

N ′

(t, ε, γ 4) implies γ = ε.

i.e. (q, ε, 4) −−−→
N ′

(t, ε, 4).

⇓
(q0, x, 4) −−−→

N

n (q, ε, ε). Hence x ∈ LE(N).

Case N accepts by final state. Then G = F and △ = Γ ∪ {4}.
Hence the transition (q, ε, γ 4) −−−→

N ′

(t, ε, γ 4). implies q ∈ F .

Hence (q0, x,⊥) −−−→
N

n (q, ε, γ) where q ∈ F . Hence x ∈ LF (N).

Claim 42. LE ⊆ L (N ′) if N = NE

and LF ⊆ L (N ′) if N = NF

Proof. If x ∈ LE(N) and N = NE then (q0, x,⊥) −−−→
N

⋆ (q, ε, ε). Then it is easy to see that

(s, x 4) −−−→
N ′

(q0, x,⊥ 4) −−−→
N ′

⋆ (q, ε, 4) −−−→
N ′

(t, ε, 4) −−−→
N ′

(t, ε, ε) and hence x ∈ LE(N ′). On the

other hand, if x ∈ LF (N) and N = NF then (q0, x,⊥) −−−→
N ′

⋆ (qF , ε, γ) and we may construct

(s, x, 4) −−−→
N ′

(q0, x,⊥ 4) −−−→
N ′

⋆ (qF , ε, γ 4) −−−→
N ′

(t, ε, γ 4) −−−→
N ′

⋆ (t, ε, ε)

NPDAs For CFLs

Theorem 37. For any, A ⊆ Σ⋆, there exists a NPDA N such that L (N) = A.

Proof. We first consider the case of A+ = A − {ε}. We know there exists a grammar in CNF (Greibach
Normal Form)
G = 〈 V, Σ, S, P 〉 where productions are all of the form

A −→ c B1 B2 . . . Bk

with c ∈ Σ and {b1, . . . , bk ⊆ V .
Let N = 〈 {q0}, Σ, V, δ, q0S, φ10 〉 where

(q0, α) ∈ δ(q0, a, A) iff A −→ aα ∈ P

Claim 43. N simulates the leftmost derivations of G i.e.
S ⇒

G

⋆ xα iff (q0, x, S) −−−→
N

⋆ (q0, ε, α), for 0000

10i.e. we show that LE(N) = A+

68

(⇐) By induction on n where (q0, x, S) −−−→
N

n (q0, δ, α).

Basis n = 0. Then x = ε and s = α.

Ind Step. Let x = ya. Then clearly we have
(q0, ya, S) −−−→

N

n−1 (q0, a, β) −−−→
N

(q0, ε, α)

from the (n − 1) steps it is clear that

(q0, y, S) −−−→
N

n−1 (q0, ε, β)

Hence by the induction hypothesis we have S ⇒
G

n−1 yβ. The move (q0, a, β) −−−→
N

(q0, ε, α) is possible

only if β = Aγ for some A ∈ V and γ ∈ V ⋆ and further α = ηγ for some η ∈ V ⋆. But from the
construction of N we know that this is possible only if

(q0, η) ∈ δ(q0, a, A)
iff A −→ aη ∈ P .

Hence S ⇒
G

n−1 yβ ⇒
G

yaηγ = xα.

(⇒) Suppose S ⇒
G

n xα by a leftmost derivation. Again by induction on n we show (q0, x, S) −−−→
N

n

(q0, ε, α)

Ind Step. x = ya and S ⇒
G

n−1 yAγ ⇒
G

yaηγ : By the IH we

have (q0, y, S) −−−→
N

n−1 (q0, ε, Aγ) and hence

(q0, ya, S) −−−→
N

n−1 (q0, a, Aγ) :

and yAγ ⇒
G

yaηγ is possible only if A −→ aη ∈ P . which implies (q0, η) ∈ δ(q0, a, A). Hence

(q0, a, Aγ) −−−→
N

(q0, ε, ηγ) = (q0, ε, α).

The Case When ε ∈ A. The grammar G for A+ is modified to include a new start symbol S0 6∈ V
with the productions S0 −→ Sε. It is then clear that

G0 = 〈 V0, Σ, S0, P0 〉 where V0 = V ∪ {S0} , P0 = P ∪ {S0 −→ S|ε}. has the property
L (G0) = A+ ∪ {ε} = A.

The NPDA, N may then be modified N0 with S0 being the new stack marker and

δ0 = δ{((q0, ε, S0), (q0, ε, S)), ((q0, ε, S0), (q0, ε, ε))}

such that N0 = 〈 {q0}, Σ, V0, δ0, q0, S0, φ 〉 with LE(N0) = LE(N) ∪ {ε} = A+ ∪ {ε} = A.

CFGs For NPDAs

The converse of the previous theorem viz. that the language accepted by a NPDA is a CFL is proven
in two parts

69

Lemma 25. The language E-accepted by a NPDA with a single state is a CFL
↑

The Construction of the previous theorem
needs to be inverted

Proof. Let N = 〈 {q0}, Σ, Γ, δ, q0,⊥, φ 〉 be a NPDA. Construct G = 〈 Γ, Σ,⊥, P 〉 where for c ∈ Σ∪ {ε},
B1 . . . Bk ∈ Γ⋆

A −→ cB1 . . . Bk ∈ P iff (q0, B1) . . . Bk ∈ δ(q0, c, A).

It is easy to see that G is CF and L (G) = LE(N).

Lemma 26. Every NPDA may be transformed into an equivalent one with a single state.

⋆ This implies that all state information may be maintained on the stack.

Theorem 38. The language accepted by any NPDA is context-free.

Lemma 27. Every NPDA may be simulated by a NPDA with a single state.

Proof. WLOG from the construction of N ′ we may assume that the given NPDA N has a single final
state.

N = 〈 Q, Σ, Γ, δ, s,⊥, {t} 〉

and that N can empty its stack after entering this state.

Consider the machine N×(which accepts by empty stack) defined by

N⋆ = 〈 {⋆}, Σ, Γ⋆, δ⋆, ⋆, 〈 s⊥t 〉, φ 〉

where Γ× = Q × Γ × Q.

δ× = {((⋆, c, 〈 pAqk 〉), (⋆, 〈 q0B1q1 〉〈 q1b2q2 〉 . . . 〈 qk−1Bkqk 〉))
| ((p, c, A), (q0, B1B2 . . . Bk)) ∈ δ, c ∈ Σ ∪ {ε},
and for all possible choices of q1, q2, . . . , qk ∈ Q}

Intiution N× simulates the behaviour of N by guessing
nondeterministically what states N will pass through in
the future and saves those guesses on the stack and
verifies their correctness.

Claim 44. ∀n ≥ 0 : (p, x, B1B2 . . . Bk) −−−→
N

n (q, ε, ε) ⇔

∃q0, q1, . . . , qk ∈ Q : p = q0 ∧ q = qk ∧
(⋆, x, 〈 q0B1q1 〉〈 q1B2qk 〉 . . . 〈 qk−1Bkqk 〉) −−−→

N

n (⋆, ε, ε)

Proof. By induction on n.
Basis n = 0. p = q , x = ε and k = 0 is trivial.
Ind Step. Assume n > 0 and the first step is such that

(p, x, B1B2 . . . Bk) −−−→
N

(r, y, c1 . . . cmB2 . . . Bk) −−−→
N

n (q, ε, ε)

with x = cy and ((p, c, B1), (r, C1 . . . Cm)) ∈ δ and c ∈ Σ ∪ {ε}.

70

By the IH there exists r0, r1, . . . , rm−1q1, . . . , qk−1,qk
such that r0 = r , q = qk and

(
,
y, 〈 r0c1r1 〉〈 r1c2r2 〉 . . . 〈 rm−1cmq1 〉〈 q1B2q2 〉 · · · = lanqk−1bkqk −−→

N×

n (⋆, ε, ε).

Also by the construction of N⋆

((⋆, c, 〈 pB1q1 〉), (⋆, 〈 r0c1r1 〉〈 r1c2r2 〉 . . . 〈 rm−1cmq1 〉)) ∈ δ×

combing these we get
(⋆, x, 〈 pB1q1 〉〈 q1B2q2 〉 . . . 〈 qk−1Bkqk 〉)

−−→
N×

1 (⋆, y, 〈 r0c1r1 〉〈 r1c2r2 〉 . . . 〈 rm−1cmq1 〉〈 q1B2q2 〉 . . . 〈 qk−1bkqk 〉)

−−→
N×

1 (⋆, ε, ε).

(⇐) Suppose (⋆, x, 〈 q0B1q1 〉〈 q1B2q2 〉 . . . 〈 qk−1Bkqk 〉) −−→
N×

n (⋆, ε, ε)

and let ((⋆, c, 〈 q0B1q1 〉), (⋆, 〈 r0c1r1 〉〈 r1c2r2 〉 . . . 〈 rm−1cmq1 〉)) be the first transition applied where
c ∈ Σ{ε} and m ≥ 0.

Then x = cy for some y and
(⋆, x, 〈 q0B1q1 〉〈 q1B2q 〉 . . . 〈 qk−1Bkqk 〉)

−−→
N×

(⋆, y, 〈 r0c1r1 〉〈 r1c2r2 〉 . . . 〈 rm−1cmq1 〉〈 q1B2q2 〉 . . . 〈 qk−1bkqk 〉)

−−→
N×

n (⋆, ε, ε).

By the IH we have (r0, y, c1c2 . . . cmB2 . . . Bk) −−−→
N

n−1 (qk, ε, ε) and also by the construction of N× we

have ((q0, c, B1), (r0, c1 . . . cm))inδ. Considering these we get

(q0, x, B1 . . . Bk) −−−→
N

(r0, y, C1 . . . CmB2 . . . Bk) −−−→
N

n−1 (qk, ε, ε).

Proof of lemma. for all x ∈ Σ⋆

x ∈ LF (N⋆) ⇔ (⋆, x, 〈 s⊥t 〉) −−→
N×

⋆ (⋆, ε, ε)

⇔ (s, x,⊥) −−−→
N

⋆ (t, ε, ε)

⇔ x ∈ LE(N).

DERTERMINISTIC PDAs

Definition 29. A DPDA is a NPDA satisfying the following constraints

∀a ∈ Σ ∪ {ε} : ∀A ∈ Γ : ∀q ∈ Q : |δ(q, a, A)| ≤ 1

i.e. δ : Q × (Σ ∪ {ε}) × Γ−7→Q × Γ⋆

(i) in other words δ is a partial function which may be undefined for certain triples in Q × (Σ∪ {ε})× Γ
(ii) δ(q, ε, A) = (q′, α) ⇒ ∀a ∈ Σ : ⇒ δ(q, a, A) is undefined.

i.e. geven any input symbol a there is at most
choice whether to consumed it or not and if it
is to be consumed there is exactly one next
configuration.

Examples. The language {anbn | n ≥ 0} has a DPDA
{w ∈ {a, b}⋆ | #a(w) = #b(w)} has a DPDA.

Some of our other examples e.g. {wwr | w ∈ {a, b}⋆} have non-deterministic transitions which decide
whether the midpoint has been reached.

71

However wcwR | w ∈ {a, b}⋆ has a deterministic PDA since the midpoint is clearly marked by a different

symbol.

THE POWER OF DPDAs

Example. The language A2 = {anb2n | n > 0} is accepted by a DPDA

Q2 = {qa, qb}, Σ = {a, b} , Γ2 = {B,⊥} , F2 = φ
δ2 : (qa, a,⊥) 7→ (qa, BB⊥) (qa, b, B) 7→ (qb, ε)

(qa, a, B) 7→ (qa, BBB) (qb, b, B) 7→ (qb, ε)
(qb, ε,⊥) 7→ (qb, ε, ε).0000

Example. Similarly the language A1 = {anbn | n > 0} has a DPDA.
The construction is exactly as above except that δ1

δ1 : (qa, a,⊥) 7→ (qa, B⊥) (qa, b, B) 7→ (qb, ε)
(qa, a, B) 7→ (qa, BB) (qb, b, B) 7→ (qb, ε)

(qb, ε,⊥) 7→ (qb, ε, ε).

Note that by changing Σ to Σ ∪ {c} where c is a new terminal symbol,the basic construction of PDAs
remains unchanged.

Clearly the language A1 ∪A2 has a PDA obtained by taking the union of δ1 ∪ δ2. However this PDA is
nonderterministic because of the first two rules. But we can go further.

Theorem 39. A1 ∪ A2 is not accepted by any DPDA.

Proof. Assume there exists a DPDA D12 = 〈 Q12, Σ, Γ, δ12, q0,⊥, F12 〉 accepting A1 ∪ A2.

Claim 45. There exists a NPDA which accepts the language A! ∪A@ ∪A3 where A3 = {anbncn|n > 0}.

Proof. Let N123 = 〈 Q123, Σ, Γ, δ123, q0,⊥, F123 〉
where Q123 = F12 ∪ F3 i.e. Q3 = {q̂ | q ∈ Q12}

F123 = F12 ∪ F3 with F3 = {q̂ | q ∈ F12}
δ123 = δ12 ∪ δ3 where δ3 = {((qF , ε, A), (q̂F , A) | qF ∈ F12, A ∈ Γ}

∪ {((q̂i, c, A), (q̂j , α) | α ∈ Γ⋆ ∧
δ12(qi, b, A) = (qj , α)}

bn

cn

anbn

ε ε

δ3

D12

72

We have for d12 to accept anbn , n > 0
(q0, a

nbn,⊥) −−→
D12

⋆ (qF , ε, α) with qF ∈ F is unique and since D12 is determinstic ,for anb2n we

have
(q0, a

nb2n,⊥) −−→
D12

⋆ (qF , bn, α) −−→
D12

⋆ (qF
′, ε, α′)

with qf
′ which implies that for aNbncn we have by construction

(q0, a
nbncn,⊥) −−−→

N123

⋆ (qF , cn, α) −−−→
N123

⋆ (q̂F
′, ε, α′) with q̂F ∈ F123.

Hence N123 acceptes A123

But we know that A123 is not CF since A3 is not CF . Hence the assumption that there is a DPDA D12

which accepts A12 is wrong !

73

