
Name: Entry: 1

CSL 705: Theory of Computation

II semester 2011-12
Wed 02 May 2012 18:00-20:00 Major WS-213 Max Marks 60

1. Please answer in the space provided on the question paper. The other sheets are only for rough work and
will not be collected.

2. You may use any paper-based material including your class notes and any other text books.

3. You are not allowed to share reference material or rough pages during the exam.

4. You are not allowed to bring into the exam hall any electronic gadgets such as computers, mobile phones
or calculators.

5. Please keep your identity card with you. You may be asked for it at any time for verification.

1. (10 marks). Prove that the set of regular expressions over a non-empty finite alphabet Σ is a context-free
language.

Solution. Let Σ = {ai | 1 ≤ i ≤ n}, Σ = {ai | 1 ≤ i ≤ n} Let Γ = Σ ∪ {ε,∅, .,∗,+, (,)}. Then the
context-free grammar R = 〈V,Γ, P, S〉 where P the set of productions is given by the following rules.

S → ∅ | ε | a1 | · · · | an | R
R → R.S | R∗ | (S) | S +R

generates the regular expressions.

Name: Entry: 2

2. (10 marks) Prove that the set of all Turing machines is a recursive set.

Solution. A setN ⊆ N is recursive iff membership inN is decidable. LetN = {dT e | T is a Turing machine},
where dT e is the code of a Turing machine T . Hence for any z ∈ N the predicate “z is the code of a Turing
machine” needs to be decidable. Hence it suffices to show that the predicate istm is decidable. However,
we can prove the stronger claim that it is primitive recursive.

Claim 0.1 The predicate istm is primitive recursive.

Proof: Consider any z ∈ N. If z indeed is the code of a Turing machine then dδe = d = proj
(3)
1 (z),

k = kpar(z) = proj
(3)
2 (z) and m = mpar(z) = proj

(3)
3 (z) yield respectively the codes of the transition

function δ, the number k of tape-symbols and the number m of states of the Turing machine respectively.

From the notes we know that these functions proj
(3)
i for i ∈ {1, 2, 3} are all primitive recursive. We also

know from the notes that the functions hd and tl are primitive recursive. If d = 0 then the transition table
of the Turing machine is the empty list and the predicate istm(z) is false. Otherwise let t1 = hd(d). it is
easy to check whether t1 encodes a valid transition using the predicate istrans defined as

istrans(t, k,m) = isstate(src(t)) ∧ istapesym(rd(t)) ∧ isstate(tgt(t)) ∧ istapesym(wr(t)) ∧ (dir(t) ≤ 1)

where each function including ∧ and ≤ is known to be primitive recursive. Then

istm(z) = (z > 0) ∧ istranslist(d, k,m)

where
istranslist(d, k,m) = istrans(hd(d)) ∧ istranslist(tl(d), k,m)

Note. The above is a simplified definition of the predicate istm which does not take into account various
other (not so important) factors which could also be defined primitive-recursively. Some of these are

(a) Every transition has to be distinct from other transitions.

(b) There is no transition from the final state.

(c) There is no non-determinism in the machine.

Name: Entry: 3

3. (1+4+5 = 10 marks). We may code finite sets of natural numbers by the function fs which for any

finite set T = {a1, . . . , am}, is defined as fs(T) =
∏
ai∈T

pai+1 where pn is the n-th prime (with p1 = 2,

p2 = 3, p3 = 5, etc.).

(a) What is fs(∅)?
(b) Prove that fs is primitive recursive.

(c) Prove that the predicate isfs : N → {0, 1} which determines whether a given number n encodes a
finite set of natural numbers, is also primitive recursive.

Solution.

(a) fs(∅) = 1.

(b) We assume that every finite set has no repetitions of elements (i.e. it is “square-free”) and is an
unordered sequence.

fs{a1, . . . , an} =
∏
ai∈T

pai+1 =
∏

1≤i≤n

prime(ai + 1)

fs would be primitive recursive provided for the function prime can be defined primitive recursively.
For the sake of primitive recursiveness we define prime(0) = 1 and for each m > 0 we define
prime(m+ 1) = prime(σ(m)) = µp < m! + 1[p > prime(m) ∧ ∀i ≤ m[i ≤ 1 ∨ i 6 | p]].
Notice that there is guaranteed to be a prime between prime(m) and m! + 1 for each m > 0 (in fact

there is guaranteed to be a prime between prime(m) and (
∏

1≤i≤m

prime(i)) + 1 by Euclid’s proof of

the infinitude of primes).

From the lecture notes and the tutorials we know that bounded quantification, bounded minimization,
case analysis, factorial and boolean operations are all primitive recursive. Hence it is easy to see that
prime is a primitive recursive function.

(c) As mentioned earlier we simply need to define a primitive recursive predicate which is true iff and
only if a number is “square-free”.

isfs(n) = n > 0 ∧ issquarefree(n)

where
issquarefree(n) = ∀i < n[¬(1 < i) ∨ ((i× i) 6 | n)]

Here again note that all the operations used are primitive recursive.

Name: Entry: 4

4. (10 marks). For unary computable functions on N, prove that the problem of function equality is
undecidable.

Solution. Let f, g : N⇀ N be any two Turing-computable functions on N implemented by Turing machines
Tf and Tg respectively. They are equal iff for each x ∈ N either both f(x) and g(x) are undefined or
f(x) = g(x) = y ∈ N for some y.

We know that diff (which computes the absolute value of the difference of two numbers) is a primitive
recursive function (see the tutorial sheet on primitive-recursion). Let h = diff ◦ (f, g).

If function equality were decidable by a predicate feq we could use the solution to the problem of deciding
whether h(x) = 0 for all x ∈ N for any unary computable function h. Let Tfeq be the Turing machine which
decides function equality for arbitrary pairs of unary computable functions. For any unary computable
function h implemented by a Turing machine Th we take the code dThe and take fst(dThe) = m and
snd(dThe) = n and evaluate the primitive recursive predicate istm(m) ∧ istm(n). If this predicate is true
we run Tfeq on the Turing machines obtained from bmc and bnc and take the difference of the values
obtained. Since Tfeq is guaranteed to give a result one way or other we may now use this mechanism to
decide whether every Turing machine halts on every input.

But we know that there is no such Turing machine, since the halting problem is undecidable (actually
semi-decidable). That is, there is no mechanism to guarantee for every unary computable function and
every argument whether the machine halts. Hence the assumption that function equality is decidable
must be false.

http://www.cse.iitd.ernet.in/~sak/courses/toc/tutorials/primitive-recursion-universality.pdf

Name: Entry: 5

5. (10 marks). Prove that a function f : N ⇀ N is computable if and only if dom(f) = {x ∈ N |
f(x) is defined } is a recursively enumerable set.

Solution. (⇒) If f is (Turing)-computable there exists a Turing machine Tf which can compute the value
of f(x) for each x ∈ N for which it is defined and does not halt otherwise. Consider the predicate

hf : N −→ 2 = {0, 1} such that hf (x) =

{
1 if Tf halts on x
0 otherwise

. Clearly dom(f) is the characteristic set

defined by this predicate and dom(f) is the set defined by h+f (x) =

{
1 if Tf halts on x
undefined otherwise

which

is a partial recursive function which is Turing computable and dom(f) is the set accepted by the Turing
machine which computes h+f and is hence recursively enumerable.

(⇐) The converse is unfortunately not true.

Name: Entry: 6

6. (10 marks). Let L1 and L2 be context-free languages over a nonempty finite alphabet Σ accepted by
NPDAs N1 and N2 respectively. Construct the NPDAs N1∪2, N1.2 and N1∗ which accept the union,
concatenation and *-closure of the languages respectively.

Solution. We know that it is possible to have NPDAs N1 = 〈Q1,Σ,Γ1,∆1, q10 ,⊥1, {q1F }〉 and N2 =
〈Q2,Σ,Γ2,∆2, q20 ,⊥2, {q2F }〉 such that LE(N1) = L1 and LE(N2) = L2 such that all the components
of N1 are disjoint from the corresponding components of N2. We may then construct

N1.2 = 〈Q1 ∪Q2,Σ,Γ1.2,∆1.2,⊥1.2, {q2F }〉

such that LE(N1.2) = L1.2 where Γ1.2 = Γ1 ∪ Γ2 ∪ {⊥1.2} and

∆1.2 = ∆1 ∪∆2∪
{((q10 , ε,⊥1.2), (q10 ,⊥1⊥1.2)), ((q1F , ε,⊥1.2), (q20 ,⊥2⊥1.2)), ((q2F , ε,⊥1.2), (q2F , ε)}

It then easy to show that LE(N1.2) = L1.2.

The NPDA for L1∗ is given by N1 = 〈Q1,Σ,Γ1,∆1∗ , q10 ,⊥1∗ , {q1F }〉 where

∆1∗ = ∆1∪
{((q10 , ε,⊥1.2), (q10 ,⊥1⊥1.2)), ((q10 , ε,⊥1.2), (q1F , ε))((q

1
F , ε,⊥1.2), (q10 ,⊥1⊥1.2)), ((q1F , ε,⊥1.2), (q1F , ε)}

N1∪2 = 〈Q1 ×Q2,Σ,Γ1 × Γ2,∆1∪2, (⊥1,⊥2), (Q1 × {q2F }) ∪ ({q1F } ×Q2)〉 where

∆1∪2 = {(((q1, q2), a, (γ1, γ2)), ((q1
′
, q2
′
), (γ1

′
, γ2
′
))) | ((q1, a, γ1), (q1

′
, γ1
′
)) ∈ ∆1, ((q2, a, γ2), (q2

′
, γ2
′
)) ∈ ∆2, a ∈ Σ, q1, q1

′ ∈ Q1, q2, q2
′ ∈ Q2}∪

{(((q1, q2), a, (γ1, γ2)), ((q1
′
, q2), (γ1

′
, γ2))) | ((q1, a, γ1), (q1

′
, γ1
′
)) ∈ ∆1, (q2, a, γ2) 6∈ Dom(∆2), a ∈ Σ, q1, q1

′ ∈ Q1, q2 ∈ Q2}∪
{(((q1, q2), a, (γ1, γ2)), ((q1, q2

′
), (γ1, γ2))) | ((q2, a, γ2), (q2

′
, γ2
′
)) ∈ ∆2, (q1, a, γ1) 6∈ Dom(∆1), a ∈ Σ, q2, q2

′ ∈ Q2, q1 ∈ Q1}∪
{(((q1F , q2), ε, (ε, γ2)), ((q1F , q

2), (ε, ε))) | q2 ∈ Q2}∪
{(((q1, q2F), ε, (γ1.ε)), ((q1, q2F), (ε, ε))) | q1 ∈ Q1}

where the two automata are combined into a single one where the moves of the individual machines are
replicated in the combined automaton. Whenver only machine can make a move it is allowed to do so. If
any of the machines reaches a final state and a correpsonding empty stack, the stack of the other machine
is also emptied.

