CSL750: Foundations of Automatic Verification

May 7, 2014 Take-home major exam

Marks Distribution: 10 + (5+5+10) + (8+8) + (8+(8+4)+8+2*(10+3)) = 100(To be submitted on neatly stapled A4-sheets by 11:00 AM 12 May 2014)

1. The *modal depth* of a HML formula is defined by structural induction and represents the maximum length chain of modal prefixes that the formula has.

Let \sim_n be the inductive definition of bisimulation where $s \sim_0 t$ for all states s, t and $s \sim_{n+1} t$ whenever for all actions a, $s \stackrel{a}{\longrightarrow} s'$ implies for some t', $t \stackrel{a}{\longrightarrow} t'$ and $s' \sim_n t'$ and for all actions b, $t \stackrel{b}{\longrightarrow} t''$ implies for some s'', $s \stackrel{a}{\longrightarrow} s''$ and $s'' \sim_n t''$.

Prove that there exists a HML formula of modal depth at most n which can distinguish states s and t if $s \sim_n t$.

- 2. Consider Peterson's mutual exclusion problem.
 - (a) Extend the solution (with minumum number of changes to the original code write out your code for 2 processes in your favourite language) to 3 processes and prove the mutual exclusion property. Your design should involve 3 symmetric processes which look identical except for the numbers which represent process ids.
 - (b) Does your solution generalise to n > 3 processes also. Explain what are the possible drawbacks of extending your solution to n > 3 processes.
 - (c) Express the properties required for "mutually-exclusive" access to the critical section in LTL. Prove the required properties for your solution for n=3
- 3. Consider the following scheme of transforming a Labelled transition system (LTS) $\mathcal{L} = \langle S, A, \rightarrow, s_0 \rangle$ to a Decorated transition system (DTS) $\mathcal{D} = \langle S, \rightarrow, s_0, \delta \rangle$ with $AP = \{via_a \mid a \in A\}$ such that $s \xrightarrow{a} s'$ in \mathcal{L} if and only if $via_a \in \delta(s')$
 - (a) Show that not every formula of HML on \mathcal{L} is expressible as a CTL formula on \mathcal{D} (you may want to illustrate it by constructing your own LTS \mathcal{L} and obtaining a corresponding DTS \mathcal{D}).
 - (b) Show that not every CTL formula on \mathcal{D} is expressible as an HML formula in \mathcal{L} (here again you might want to construct your own new LTS and obtain the corresponding DTS).
- 4. A timed automaton (TA) is said to be *deterministic* if for every location l, for any two outgoing edges from l that are labelled with the same action a, the guards g_1 and g_2 on the two edges do not overlap, i.e. $[g_1] \cap [g_2] = \emptyset$.
 - (a) Show that there exists a TA A, corresponding to which there does not exist a deterministic TA B such that L(A) = L(B).
 - (b) Consider a TA A with the set of actions $Act_A \subseteq Act$ appearing on the edges of A. The set of clocks of A is defined as $C = \{x_a \mid a \in Act_A\}$. On every edge labelled with an action $a \in Act_A$ in A, only clock x_a is reset (i.e. no other clock is reset on the edge labelled with action a). Show that such a TA can be determinized, i.e. given a non-deterministic TA A, one can construct a deterministic TA B such that L(A) = L(B). Write the steps for determinizing the TA and analyze the time complexity of your procedure.
 - (c) Show with an example, that the construction of the zone graph discussed in class may not terminate.
 - (d) Write algorithms for checking time abstracted delay bisimulation and time abstracted observational bisimulation using zone graph. Discuss the time complexity of your algorithms.