CS432N/CS728: Compiler Design
I semester 2004-05

Assignment: Byte Code Optimization

1 The problem

Given that you have a bytecode interpreter, the next step is to introduce an optimizations as options to your
interpreter. Implement the following optimizations for the bytecode language of the last assignment.

Constant propagation

Copy Propagation

Local and Global Common Subexpression Elimination
Loop Invariant Code Motion

Induction variables

Dead Code Elimination

S ot WD

Study Chapter 21 of Muchnick’s book to analyse how to organize the calls to various optimizations and decide
on

e the order of performing optimizations,

e a criterion to ensure that you stop the iteration process at some suitable point. The criterion should
not be anything fixed. Clearly the number of iterations of the sequence of optimizations depends upon
the input code. It could be a function of either the number of optimizations detected at the end of each
iteration or the number of changes in code produced with each iteration.

2 The structure of the solution

In order to do that structure your code in the following modules.

Driver This module consists of the main loop for performing the optimizations. It also (after doing an el-
ementary scan and parse of the input program along with a symbol table— you may copy it from your
interpreter) constructs an encoding of the control-flow graph of the input program, and makes it available
for the other modules. The other modules such as data-flow analysis and the actual optimization modules
are nested in this module.

Data flow analysis This should be a separate signature and structure so that all the data-flow problems of the
input program can be performed at one central place. The major data structures here are the functions
which manipulate the bit-vectors you use the collect and collate information.

Optimizations Each optimization is a function which takes the control flow graph as input (and also has
access to the input code) and actually performs the optimization. Each such function therefore outputs
a fresh control flow graph and corresponding code. The whole suite of optimizations are the methods
available to the Driver module.

The external interface has to be such that:



e a user specifies which optimizations are to be performed (including none) either interactively or as
command-line options.

e The input to the optimizer is a program written in the bytecode language of the last assignment

e The output is again optimized bytecode written in the same language, so that the optimized code can
simply be "UNIX-piped’ to the interpreter you have already written.



