Local Search Heuristics for Facility Location Problems

Rohit Khandekar

Dept. of Computer Science and Engineering,
Indian Institute of Technology Delhi

Joint work with: Vijay Arya, Naveen Garg, Vinayaka Pandit
 Kamesh Munagala, Adam Meyerson
Outline

- Define the k-median problem
- Simple local search algorithm
- Analysis
- Generalization
The k-median problem

We are given n points in a metric space.
The k-median problem

We are given n points in a metric space.

\[d(u, v) \geq 0, \quad d(u, u) = 0, \quad d(u, v) = d(v, u) \]
The k-median problem

We are given n points in a metric space.
The k-median problem

We are given n points in a metric space.

We want to identify k “medians” such that the sum of distances of all the points to their nearest medians is minimized.
The k-median problem

We are given n points in a metric space.

We want to identify k “medians” such that the sum of lengths of all the red segments is minimized.
A brief bio-sketch of the k-median problem

- NP-hard
A brief bio-sketch of the k-median problem

- NP-hard
- Known to OR community since 60’s.
A brief bio-sketch of the k-median problem

- NP-hard
- Known to OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
A brief bio-sketch of the k-median problem

- NP-hard
- Known to OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
- Used also for clustering, data mining.
A brief bio-sketch of the k-median problem

- NP-hard
- Known to OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
- Used also for clustering, data mining.
- Received the attention of the Approximation algorithms community in early 90’s.
A brief bio-sketch of the \(k \)-median problem

- NP-hard
- Known to OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
- Used also for clustering, data mining.
- Received the attention of the Approximation algorithms community in early 90’s.
- Various algorithms via LP-relaxation, primal-dual scheme, etc.
A local search algorithm
A local search algorithm

Start with any set of k medians.
A local search algorithm

Identify a median and a point that is not a median.
A local search algorithm

And SWAP tentatively!
Perform the swap, only if the new solution is “better” (has less cost) than the previous solution.
A local search algorithm

Perform the swap, only if the new solution is “better” (has less cost) than the previous solution.

Stop, if there is no swap that improves the solution.
The algorithm

Algorithm Local Search.

1. $S \leftarrow$ any k medians
2. While $\exists s \in S$ and $s' \notin S$ such that,
 \[
 cost(S - s + s') \leq cost(S),
 \]
 do $S \leftarrow S - s + s'$
3. return S
The algorithm

Algorithm Local Search.

1. $S \leftarrow$ any k medians
2. While $\exists \ s \in S$ and $s' \notin S$ such that,
 $$\text{cost}(S - s + s') \leq (1 - \varepsilon)\text{cost}(S),$$
 do $S \leftarrow S - s + s'$
3. return S
Main theorem

The local search algorithm described above computes a solution with cost (the sum of distances) at most \(5\) times the minimum cost.
Main theorem

The local search algorithm described above computes a solution with cost (the sum of distances) at most 5 times the minimum cost.

Korupolu, Plaxton, and Rajaraman (1998) analyzed a variant in which they permitted adding, deleting, and swapping medians and got $(3 + 5/\varepsilon)$ approximation by taking $k(1 + \varepsilon)$ medians.
Some notation

$S = \{ \bullet \bullet \bullet \bullet \bullet \}$ \hspace{1cm} $|S| = k$ \hspace{1cm} $N_S(s)$

$cost(S) = \text{the sum of lengths of all the red segments}$
Some more notation

\[O = \{ \ldots \} \quad |O| = k \]
Some more notation

\[N_S^o = N_O(o) \cap N_S(s) \]
Local optimality of S

- Since S is a local optimum solution,
Local optimality of S

Since S is a local optimum solution, we have,

$$cost(S - s + o) \geq cost(S)$$

for all $s \in S, o \in O$.

Local optimality of S

- Since S is a local optimum solution,
 We have,
 \[\text{cost}(S - s + o) \geq \text{cost}(S) \quad \text{for all } s \in S, o \in O. \]

- We shall add k of these inequalities (chosen carefully) to show that,
 \[\text{cost}(S) \leq 5 \cdot \text{cost}(O) \]
We say that $s \in S$ captures $o \in O$ if

$$|N^o_s| > \frac{|N^o_{O(o)}|}{2}.$$
We consider a permutation $\pi : N_O(o) \to N_O(o)$ that satisfies the following property:

if s does not capture o then a point $j \in N_s^O$ should get mapped outside N_s^O.
We consider a permutation \(\pi : NO(o) \rightarrow NO(o) \) that satisfies the following property:

if \(s \) does not capture \(o \) then a point \(j \in N_s^o \) should get mapped outside \(N_s^o \).
A mapping π

$|N_O(o)| = l$

π
Capture graph

Construct a bipartite graph $G = (O, S, E)$ where there is an edge (o, s) if and only if $s \in S$ captures $o \in O$.
Swaps considered

Why consider the swaps?
"Why consider the swaps?"
Properties of the swaps considered

- If $\langle s, o \rangle$ is considered, then s does not capture any $o' \neq o$.

\[l \geq l/2 \]
Properties of the swaps considered

- If $\langle s, o \rangle$ is considered, then s does not capture any $o' \neq o$.
- Any $o \in O$ is considered in exactly one swap.
Properties of the swaps considered

- If $\langle s, o \rangle$ is considered, then s does not capture any $o' \neq o$.
- Any $o \in O$ is considered in exactly one swap.
- Any $s \in S$ is considered in at most 2 swaps.
Focus on a swap $\langle s, o \rangle$

Consider a swap $\langle s, o \rangle$ that is one of the k swaps defined above. We know $\text{cost}(S - s + o) \geq \text{cost}(S)$.
Upper bound on $\text{cost}(S - s + o)$

- In the solution $S - s + o$, each point is connected to the closest median in $S - s + o$.
Upper bound on $\text{cost}(S - s + o)$

- In the solution $S - s + o$, each point is connected to the closest median in $S - s + o$.
- $\text{cost}(S - s + o)$ is the sum of distances of all the points to their nearest medians.
Upper bound on $\text{cost}(S - s + o)$

- In the solution $S - s + o$, each point is connected to the closest median in $S - s + o$.
- $\text{cost}(S - s + o)$ is the sum of distances of all the points to their nearest medians.
- We are going to demonstrate a possible way of connecting each client to a median in $S - s + o$ to get an upper bound on $\text{cost}(S - s + o)$.
Upper bound on $\text{cost}(S - s + o)$

Points in $N_O(o)$ are now connected to the new median o.
Upper bound on $\text{cost}(S - s + o)$

Thus, the increase in the distance for $j \in NO(o)$ is at most

$$O_j - S_j.$$
Upper bound on $cost(S - s + o)$

Consider a point $j \in N_S(s) \setminus N_O(o)$.
Upper bound on $\text{cost}(S - s + o)$

- Consider a point $j \in N_S(s) \setminus N_O(o)$.
- Suppose $\pi(j) \in N_S(s')$. (Note that $s' \neq s$.)
Consider a point $j \in N_S(s) \setminus N_O(o)$.

Suppose $\pi(j) \in N_S(s')$. (Note that $s' \neq s$.)

Connect j to s' now.
Upper bound on $\text{cost}(S - s + o)$

- New distance of j is at most $O_j + O_{\pi(j)} + S_{\pi(j)}$.
Upper bound on \(\text{cost}(S - s + o) \)

- New distance of \(j \) is at most \(O_j + O_{\pi(j)} + S_{\pi(j)} \).
- Therefore, the increase in the distance for \(j \in N_S(s) \setminus N_O(o) \) is at most

\[
O_j + O_{\pi(j)} + S_{\pi(j)} - S_j.
\]
Upper bound on the increase in the cost

- Lets try to count the total increase in the cost.
Upper bound on the increase in the cost

- Lets try to count the total increase in the cost.
- Points $j \in N_O(o)$ contribute at most

$$O_j - S_j.$$
Let's try to count the total increase in the cost.

Points $j \in NO(o)$ contribute at most

$$(O_j - S_j).$$

Points $j \in NS(s) \setminus NO(o)$ contribute at most

$$(O_j + O_{\pi(j)} + S_{\pi(j)} - S_j).$$
Upper bound on the increase in the cost

- Let’s try to count the total increase in the cost.
- Points \(j \in N_O(o) \) contribute at most
 \[
 (O_j - S_j).
 \]
- Points \(j \in N_S(s) \setminus N_O(o) \) contribute at most
 \[
 (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j).
 \]
- Thus, the total increase is at most,
 \[
 \sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j).
 \]
Upper bound on the increase in the cost

\[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \]
Upper bound on the increase in the cost

\[
\begin{align*}
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \\
\geq \text{cost}(S - s + o) - \text{cost}(S)
\end{align*}
\]
Upper bound on the increase in the cost

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \\
\geq \text{cost}(S - s + o) - \text{cost}(S) \\
\geq 0
\]
Plan

- We have one such inequality for each swap \((s, o)\).

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]
Plan

- We have one such inequality for each swap \(\langle s, o \rangle \).

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

- There are \(k \) swaps that we have defined.
Plan

- We have one such inequality for each swap \(\langle s, o \rangle \).

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

- There are \(k \) swaps that we have defined.
Plan

- We have one such inequality for each swap $\langle s, o \rangle$.

$$\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.$$

- There are k swaps that we have defined.

- Let’s add the inequalities for all the k swaps and see what we get!
The first term . . .

\[
\left[\sum_{j \in N_O(o)} (O_j - S_j) \right] + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]
The first term . . .

\[
\left[\sum_{j \in N_0(o)} (O_j - S_j) \right] + \sum_{j \in N_S(s) \setminus N_0(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in O \) is considered in exactly one swap.
The first term . . .

\[
\left[\sum_{j \in N_O(o)} (O_j - S_j) \right] + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in O \) is considered in exactly one swap. Thus, the first term added over all the swaps is

\[
\sum_{o \in O} \sum_{j \in N_O(o)} (O_j - S_j)
\]
The first term . . .

\[
\left[\sum_{j \in N_O(o)} (O_j - S_j) \right] + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in O \) is considered in exactly one swap. Thus, the first term added over all the swaps is

\[
\sum_{o \in O} \sum_{j \in N_O(o)} (O_j - S_j)
\]

\[
= \sum_j (O_j - S_j)
\]
The first term . . .

\[
\left[\sum_{j \in N_O(o)} (O_j - S_j) \right] + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in O \) is considered in exactly one swap. Thus, the first term added over all the swaps is

\[
\sum_{o \in O} \sum_{j \in N_O(o)} (O_j - S_j)
\]

\[
= \sum_j (O_j - S_j)
\]

\[
= \text{cost}(O) - \text{cost}(S).
\]
The second term . . .

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \left[\sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \geq 0.
\]
The second term . . .

\[\sum_{j \in NO(o)} (O_j - S_j) + \left[\sum_{j \in NS(s) \setminus NO(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \geq 0. \]

Note that

\[O_j + O_{\pi(j)} + S_{\pi(j)} \geq S_j. \]
The second term . . .

\[
\sum_{j \in N_{O(o)}} (O_j - S_j) + \left[\sum_{j \in N_{S(s)} \setminus N_{O(o)}} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \geq 0.
\]

Note that

\[O_j + O_{\pi(j)} + S_{\pi(j)} \geq S_j. \]

Thus

\[O_j + O_{\pi(j)} + S_{\pi(j)} - S_j \geq 0. \]
The second term . . .

\[
\sum_{j \in NO(o)} (O_j - S_j) + \left[\sum_{j \in NS(s) \setminus NO(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \geq 0.
\]

Note that

\[O_j + O_{\pi(j)} + S_{\pi(j)} \geq S_j. \]

Thus

\[O_j + O_{\pi(j)} + S_{\pi(j)} - S_j \geq 0. \]

Thus the second term is at most

\[
\sum_{j \in NS(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j).
\]
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

$$2 \sum_{s \in S} \sum_{j \in N_S(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$
The second term . . .

Note that each \(s \in S \) is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

\[
2 \sum_{s \in S} \sum_{j \in N_s(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)
\]

\[
= 2 \sum_j (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)
\]
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

$$2 \sum_{s \in S} \sum_{j \in N_S(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \sum_j (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \left[\sum_j O_j + \sum_j O_{\pi(j)} + \sum_j S_{\pi(j)} - \sum_j S_j \right]$$
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

$$2 \sum_{s \in S} \sum_{j \in N_S(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \sum_{j} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \left[\sum_{j} O_j + \sum_{j} O_{\pi(j)} + \sum_{j} S_{\pi(j)} - \sum_{j} S_j \right]$$

$$= 4 \cdot \text{cost}(O).$$
Putting things together

\[
0 \leq \sum_{\langle s,o \rangle} \left[\sum_{j \in N_o(o)} (O_j - S_j) \right] + \sum_{j \in N_s(s) \setminus N_o(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)
\]
Putting things together

\[0 \leq \sum_{\langle s,o \rangle} \left[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \]

\[\leq \left[cost(O) - cost(S) \right] + \left[4 \cdot cost(O) \right] \]
Putting things together

\[
0 \leq \sum_{(s,o)} \left[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \\
\leq [\text{cost}(O) - \text{cost}(S)] + [4 \cdot \text{cost}(O)] \\
= 5 \cdot \text{cost}(O) - \text{cost}(S).
\]
Putting things together

\[
0 \leq \sum_{(s,o)} \left[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \\
\leq [\text{cost}(O) - \text{cost}(S)] + [4 \cdot \text{cost}(O)] \\
= 5 \cdot \text{cost}(O) - \text{cost}(S).
\]

Therefore,

\[
\text{cost}(S) \leq 5 \cdot \text{cost}(O).
\]
A tight example

\[(k - 1)\]

\[(k - 1)/2\]

\[(k + 1)/2\]
A tight example

\[(k - 1) \]

\[\begin{array}{cccccc}
0 & 0 & 0 & 0 & \cdots & 0 \\
2 & 2 & 2 & 2 & & 2 \\
\end{array} \]

\[\frac{(k - 1)}{2} \]

\[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & & 1 \\
0 & 0 & & 0 \\
\end{array} \]

\[\frac{(k + 1)}{2} \]

\[\text{cost}(S) = 4 \cdot \frac{(k - 1)}{2} + \frac{(k + 1)}{2} = \frac{5k - 3}{2} \]
A tight example

\[
\begin{align*}
(k - 1) & \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
2 & 2 & 2 & 2 & \ldots & 2 & 2 \\
(k - 1)/2 & \\
\end{align*}
\]

\[
\begin{align*}
O & \\
1 & 1 & \ldots & 1 & \\
S & \\
1 & 1 & \ldots & 1 \\
(k + 1)/2 & \\
\end{align*}
\]

- \[cost(S) = 4 \cdot (k - 1)/2 + (k + 1)/2 = (5k - 3)/2\]
- \[cost(O) = 0 + (k + 1)/2 = (k + 1)/2\]
Doing multiple swaps

- Doing single swaps yields 5 approximation.
Doing multiple swaps

- Doing single swaps yields 5 approximation.
- Doing p-way swaps yields $(3 + 2/p)$ approximation.