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Abstract. k-means++ [5] seeding procedure is a simple sampling based
algorithm that is used to quickly find k centers which may then be used
to start the Lloyd’s method. There has been some progress recently on
understanding this sampling algorithm. Ostrovsky et al. [10] showed that

if the data satisfies the separation condition that
∆k−1(P )

∆k(P )
≥ c (∆i(P ) is

the optimal cost w.r.t. i centers, c > 1 is a constant, and P is the point
set), then the sampling algorithm gives an O(1)-approximation for the
k-means problem with probability that is exponentially small in k. Here,
the distance measure is the squared Euclidean distance. Ackermann and
Blömer [2] showed the same result when the distance measure is any
µ-similar Bregman divergence. Arthur and Vassilvitskii [5] showed that
the k-means++ seeding gives an O(log k) approximation in expectation
for the k-means problem. They also give an instance where k-means++
seeding gives Ω(log k) approximation in expectation. However, it was un-
resolved whether the seeding procedure gives an O(1) approximation with

probability Ω
(

1
poly(k)

)
, even when the data satisfies the above-mentioned

separation condition. Brunsch and Röglin [8] addressed this question and
gave an instances on which k-means++ achieves an approximation ratio
of (2/3− ε) · log k only with exponentially small probability. However, the

instances that they give satisfy
∆k−1(P )

∆k(P )
= 1 +o(1). In this work, we show

that the sampling algorithm gives an O(1) approximation with probabil-
ity Ω

(
1
k

)
for any k-means problem instance where the point set satisfy

separation condition
∆k−1(P )

∆k(P )
≥ 1 + γ, for some fixed constant γ. Our

results hold for any distance measure that is a metric in an approximate
sense. For point sets that do not satisfy the above separation condition,
we show O(1) approximation with probability Ω(2−2k).

1 Introduction

The k-median problem with respect to a point domain X and a distance measure
D : X × X → R≥0, is defined as follows:

Given a set P ⊆ X of n points, find a subset C ⊆ X of k points (these
are called centers) such that the objective function

φC(P ) =
∑
p∈P

min
c∈C

D(p, c)



is minimized. For X = Rd and D(x, y) = ||x− y||2, the problem is called
the k-means problem.

k-means++ seeding is a simple sampling algorithm that is used to quickly find
k centers that is then used to start the Lloyd’s method. This sampling procedure
is extremely simple and can be described as follows:

(SampAlg) Pick the first center uniformly at random from P . Choose a
point p ∈ P to be the ith center for i > 1 with probability proportional
to the distance of p from the nearest previously chosen centers, i.e., with

probability minc∈C D(p,c)
φC(P ) .

There has been some recent progress in understanding the above sampling
procedure. However, even this simple procedure is not fully understood. There
are a number of important questions that are unresolved. Next, we give the
current state of understanding and discuss some of the unresolved questions.

Previous work The non-uniform sampling technique defined above was first
analysed by Ostrovsky et al. [10] for the k-means problem. They showed that

if the given data is separable in the sense that ∆k−1(P )
∆k(P ) ≥ c > 1, for some

fixed constant c, then the sampling algorithm gives an O(1) approximation with
probability exponentially small in k. After this, Arthur and Vassilvitskii [5]
showed that the algorithm gives an O(log k) approximation in expectation for
any data set. They also give a problem instance where the algorithm gives an
approximation of Ω(log k) in expectation. However, for the instance that they
construct, the sampling algorithm gives an O(1) approximation with constant
probability. The sampling algorithm may be regarded as useful as long as we can

show that it gives an O(1) approximation with probability Ω
(

1
poly(k)

)
. This is

because we may repeat O(poly(k)) times and take the best answer. Some initial
progress towards this question was by Aggarwal [3] et al. and Ailon et al. [4] who
showed that sampling more than k centers gives an O(1) pseudo-approximation
with constant probability. However, the basic question whether we can get an O(1)

approximation with probability Ω
(

1
poly(k)

)
remained unresolved. In a recent

paper, Brunsch and Röglin [8] gave a problem instance where the sampling
algorithm gives a (2/3− ε) · log k approximation with probability exponentially
small in k. This resolves the question for the case when the data is not assumed to
be separable in the sense of Ostrovsky et al. [10]. However, the example that they

construct satisfies ∆k−1(P )
∆k(P ) ≤ 1 + o(1) and hence does not satisfy the separability

condition in the spirit of Ostrovsky et al.
Most of the above-mentioned results are for the k-means problem where the

data set consists of points in Rd and the distance measure is the squared Euclidean
distance. There are multiple instances in Machine Learning where the goal is
to solve the problem with respect to other distance measures. Some examples
include the Kullback-Leibler divergence, Mahalanobis distance, Itakura-Saito
divergence. We can ask the same questions for the k-median problem with respect



to these distance measures. Ackermann and Blömer [2] analysed the sampling
algorithm, SampAlg, with respect to a general class of distance measures called
the µ-similar Bregman divergences. They show that if the data set satisfies the

separation condition in the spirit of Ostrovsky et al., (that is ∆k−1(P )
∆k(P ) ≥ c > 1),

then SampAlg gives an O(1)-approximation with probability Ω(2−2k).
In our work, we analyse the sampling algorithm for the case that the data is

separable, i.e., ∆k−1(P )
∆k(P ) ≥ c for some constant c > 1. This separability condition

has been argued to be reasonable when using k-means objective to cluster data
since the condition implies that the data is “well-clusterable”.

Our contribution We show that given a data set that is separable, i.e., ∆k−1(P )
∆k(P ) ≥

1 + γ, for some constant γ, SampAlg gives an O(1) approximation with proba-
bility Ω(1/k). Our analysis works for the k-median problem with respect to any
distance measure that is a metric in some approximate sense. We will look at
some conditions that the distance measure needs to satisfy below.

Definition 1 (α-approximate symmetry). Let 0 < α ≤ 1. Let X be some
data domain and D be a distance measure with respect to X . D is said to satisfy
the α-approximate symmetry property if the following holds:

∀x, y ∈ X , α ·D(y, x) ≤ D(x, y) ≤ (1/α) ·D(y, x). (1)

Definition 2 (β-approximate triangle inequality). Let 0 < β ≤ 1. Let X
be some data domain and D be a distance measure with respect to X . D is said
to satisfy the β-approximate triangle inequality if the following holds:

∀x, y, z ∈ X , D(x, z) ≤ (1/β) · (D(x, y) +D(y, z)). (2)

Definition 3 (Centroid property). A distance measure D over space X is
said to satisfy the centroid property if for any subset P ⊆ X and any point c ∈ X ,
we have: ∑

p∈P
D(p, c) = ∆1(P ) + |P | ·D(m(P ), c),

where m(P ) =
∑

p∈P p

|P | denotes the mean of the points in P . Also, as mentioned

earlier, ∆1(P ) denote the optimal cost with respect to 1 center.

Note that in the k-means problem, X = Rd and D(x, y) = ||x − y||2. This
distance measure satisfies α-approximate symmetry and β-approximate triangle
inequality for α = 1 and β = 1/2. The squared Euclidean distance also satisfies
the Centroid property. Note that the squared Euclidean distance is not the only
distance measure, used for clustering in practice, that satisfies these properties.
Mahalanobis distance also satisfies the above properties. A class of distance
measures called Bregman divergences that are used frequently in Machine Learning
is known to satisfy the Centroid property. Furthermore, an important sub-class of
Bregman divergences, called µ-similar Bregman divergences, is known to satisfy
all of the above properties (see [1] for an overview of Bregman divergences). We
can now give our main result using the above definitions:



Theorem 1 (Main Theorem). Let 0 < α, β ≤ 1 and γ = 32
(αβ)4 be constants.

Let D be a distance measure over space X such that D satisfies α-approximate
symmetry, β-approximate trianlge inequality, and the Centroid property. Let
P ⊆ X be any set of n points from the space X such that the following holds:

∆k−1(P )

∆k(P )
≥ 1 + γ, (3)

where ∆i(P ) is defined to be the optimal value of the objective function with i

centers, i.e., ∆i(P ) = minC,|C|=i

[∑
p∈P minc∈C D(p, c)

]
. Then SampAlg gives

an O(1)-approximation with probability Ω(1/k).

We also show that when the data is not given to be separable, then SampAlg
gives an O(1) approximation with probability Ω(2−2k). Note that this is for any
k-median instance with respect to any distance measure that satisfy α-symmetry
and β-triangle inequality 1. This is an improvement over the result by Ackermann

Blömer [2] who get a similar result though for separable data, i.e. ∆k−1(P )
∆k(P ) ≥ c

for some fixed constant c. We discuss this result in Section 3.

Techniques Here is an outline of the proof of our Main Theorem. Let {A1, ..., Ak}
denote the points in the optimal clustering. From the Centroid property, we
know that the centroids {c1, ..., ck} of {A1, ..., Ak} are the optimal centers. Let
dij = D(ci, cj) and let Tmin = mini 6=j [|Ai| · dij ]. Let C ′ denote any set of i
points chosen by the first i iterations of the algorithm. Let j be the index of
an optimal cluster such that no point in C ′ belongs to Aj . We will first argue
that φC′(Aj) ≥ d · Tmin (for some constant d) by showing that if this were not
the case, then the separability condition is violated. Let Xi denote the points
in those optimal clusters such that C ′ has a point from that cluster and let
X̄i denote the remaining points. From the previous argument, we know that
φC′(X̄i) ≥ (k − i) · d · Tmin. On the other hand, we can argue that the expected
cost of the centers C ′ w.r.t. Xi is at most d′ · ∆k(P ) (for some constant d′).
Then we show that the probability of picking the (i+ 1)th point from X̄i is at

least k−i
k−i+1 . Note that this probability is proportional to φC′ (X̄i)

φC′ (P ) and if this were

smaller than k−i
k−i+1 , then Tmin

∆k(P ) ≤ d
′′ (for some constant d′′) but this contradicts

with the separability condition. So, the probability that we pick points from each
optimal cluster is Ω(1/k) (using telescoping product). Conditioned on this event,
we will argue that the expected cost is at most some constant times the optimal.

We now focus on the proof of our Main Theorem

2 Proof of Theorem 1

Let A1, ..., Ak denote the optimal clusters, i.e., the point set P is partitioned
into subsets A1, ..., Ak such that all points in Ai are in the ith cluster as per

1 the Centroid property is not required for this result



the optimal k-median clustering. Let COPT = {c1, ..., ck} be the optimal cluster
centers. So, ∀i 6= j, p ∈ Aj , D(p, ci) ≥ D(p, cj). For any set of centers C, we
denote the distance of a point p to it nearest center in C with D(p, C). For any

optimal cluster Ai, let ri =
∑

p∈Ai
D(p,ci)

|Ai| .

We will need the following two basic lemmas. These are generalizations of
Lemmas 3.1 and 3.2 in [5].

Lemma 1. Consider any optimal cluster Ai. Let c be a point chosen from Ai
uniformly at random. Then we have Exp[φ{c}(Ai)] ≤ 2

αβ · φ{ci}(Ai).

Proof. The expected cost may be written as:

Exp[φ{c}(Ai)] =
∑
p∈Ai

1

|Ai|
·
∑
q∈Ai

D(q, p)

≤
∑
p∈Ai

1

|Ai|
·
∑
q∈Ai

(1/β) · (D(q, ci) +D(ci, p))

≤
∑
p∈Ai

1

|Ai|
·
∑
q∈Ai

(1/β) · (D(q, ci) + (1/α) ·D(p, ci))

=
∑
p∈Ai

1

|Ai|
·
[
φ{ci}(Ai)

β
+
|Ai|
αβ
·D(p, ci))

]
≤ 2

αβ
· φ{ci}(Ai)

ut

Lemma 2. Let C be any set of centers. Consider any optimal cluster Ai. Let c
be a center chosen using non-uniform sampling with respect to the set C and let
C ′ = C ∪ {c}. The we have Exp[φC′(Ai)|c ∈ Ai] ≤ 4

(αβ)2 · φ{ci}(Ai).

Proof. The probability that we choose a point p ∈ Ai to be c, conditioned on the

fact that c is chosen from Ai is given by D(p,C)∑
q∈Ai

D(q,C) . Once we choose p to be

c, then any point q′ ∈ Ai contributes min(D(q′, C), D(q′, c)) to the cost. Using
these two observations, we get the following:

Exp[φC′(Ai)|c ∈ Ai] =
∑
p∈Ai

D(p, C)∑
q∈Ai

D(q, C)
·
∑
q′∈Ai

min(D(q′, C), D(q′, p)) (4)

From β-approximate triangle inequality, we have that D(p, C) ≤ (1/β)·(D(p, q′′)+
D(q′′, C)) for all q′′ ∈ Ai. So, we have

D(p, C) ≤ 1

β|Ai|
·

 ∑
q′′∈Ai

D(p, q′′) +
∑
q′′∈Ai

D(q′′, C)

 (5)



Using above in (4), we get the following:

Exp[φC′(Ai)|c ∈ Ai] ≤
1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(p, q′′)∑
q∈Ai

D(q, C)
·
∑
q′∈Ai

D(q′, C) +

1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(q′′, C)∑
q∈Ai

D(q, C)
·
∑
q′∈Ai

D(q′, p)

=
1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(p, q′′) +
1

β|Ai|
·
∑
p∈Ai

∑
q′∈Ai

D(q′, p)

≤ 1

β|Ai|
·
∑
p∈Ai

∑
q′′∈Ai

D(p, q′′) +
1

αβ|Ai|
·
∑
p∈Ai

∑
q′∈Ai

D(p, q′) (using α-symmetry)

≤ 2

αβ
· 1

|Ai|
∑
p∈Ai

∑
q∈Ai

D(p, q)

≤ 2

αβ2
· 1

|Ai|
∑
p∈Ai

∑
q∈Ai

(D(p, ci) +D(ci, q)) (using β-triangle inequality)

≤ 2

(αβ)2
· 1

|Ai|
∑
p∈Ai

∑
q∈Ai

(D(p, ci) +D(q, ci)) (using α-symmetry)

=
4

(αβ)2
· φ{ci}(Ai)

ut

The above lemma says that conditioned on picking the next center from a
cluster Ai, the expected cost of this cluster with respect to the currently chosen
centers is within O(1) factor of the optimal. So, in general once we pick a center
from an optimal cluster, there is good chance that we may be able to “forget”
about this cluster in the future as we already have a constant approximation
with respect to this cluster. The issue might be that the given a current set of
centers C, the probability of sampling the next center from a given cluster might
be very small. We show that if this happens, then the separation condition is
violated.

Let Ci = {c′j1 , ..., c
′
ji
} be the centers chosen in the first i steps of the sampling

algorithm, where Ji = {j1, ..., ji} denotes the subset of indices of the optimal
cluster to which the centers belongs. Let Xi = ∪j∈JiAj . Let Ei be the event that
Ji contains i distinct indices, i.e., the cardinality of Ji is i. We will later show
that ∀i, Pr[Ei] ≥ k−i+1

k .

First, we show that the expected cost of Ci with respect to the point set Xi

is at most some constant times the cost of COPT with respect to Xi.

Lemma 3. ∀i,Exp[φCi
(Xi) | Ei] ≤ 4

(αβ)2 · φCOPT
(Xi).

Proof. The proof follows from Lemmas 1 and 2. ut



In the next Lemma, we get a lower bound on the probability that the cost of
the solution given by the sampling algorithm is at most some constant times the
cost of the optimal solution.

Lemma 4. Pr
[
φCk

(P ) ≤ 8
(αβ)2 · φCOPT

(P )
]
≥ (1/2) ·Pr[Ek].

Proof. Given that event Ek happens, we have Xk = P and from Lemma 3, we
get that Exp[φCk

(P ) | Ek] ≤ 4
(αβ)2 · φCOPT

(P ). By Markov, we get that

Pr
[
φCk

(P ) > (8/(αβ)2) · φCOPT
(P ) | Ek

]
≤ 1/2.

Removing the conditioning on Ek we get the desired Lemma. ut

Now, all we need to show is that Pr[Ek] ≥ 1/k. This trivially follows from
Lemma 6 that shows that Pr[Ei+1 | Ei] ≥ k−i

k−i+1 .

We will need the some additional definitions. Let X̄i = P \Xi. Let J̄i = [k]\Ji.
Note that conditioned on Ei happening, |J̄i| = k− i. For any s ∈ J̄i let Is denote
the index t ∈ Ji such that D(cs, c

′
t) is minimized. Let Vs = D(cs, cIs). We know

that

D(c′Is , cIs) ≤ D(c′Is , cs) and Vs ≤ (1/β) · (D(cs, c
′
Is) +D(c′Is , cIs))

The first inequality is due to the fact that c′Is ∈ AIs (hence is c′Is is closer to the
center of AIs than of As). The above inequality gives us the following:

Vs ≤ (1/β) · (D(cs, c
′
Is) + (1/α) ·D(cs, c

′
Is)) ≤ 2

αβ
·D(cs, c

′
Is) (6)

Let Ts = |As| · Vs. Let Tmin = mini 6=j |Ai| ·D(ci, cj). Note that

∀s ∈ J̄i, Ts ≥ Tmin. (7)

Using the above definitions we can show the following Lemma.

Lemma 5. φCi(X̄i) ≥ (k − i) · (αβ)2

8 · Tmin

Proof. For any s, let Ains denote those data points that are closer to the center
cs than any data point that does not belong to As, i.e.,

Ains = {p|p ∈ As and ∀q /∈ As, D(p, cs) ≤ D(p, q)}

Let the remaining points in As be denoted by Aouts , i.e., Aouts = As \Ains . Next,
we will argue that if the data is separable,i.e., ∆k−1(P )/∆k(P ) ≥ 1 + γ, then
|Ains | ≥ |Aouts |.

Claim. Let γ = 32
(αβ)4 . If ∆k−1(P )/∆k(P ) > 1 + γ, then ∀s, |Ains | ≥ |Aouts |.



Proof. Consider any point p ∈ Aouts . Let N [p] denote the point /∈ As that is
nearest to p and let I[p] denote the index of the cluster to which N [p] belongs.
We note that the following inequalities hold:

D(p, cI[p]) ≤
1

β
·
(
D(p,N [p]) +D(N [p], cI[p])

)
(using triangle property)

≤ 1

β
·
(
D(p, cs) +D(N [p], cI[p])

)
(since D(p,N [p]) ≤ D(p, cs))

≤ 1

β
· (D(p, cs) +D(N [p], cs)) (since D(N [p], cI[p]) ≤ D(N [p], cs))

≤ 1

β
·
(
D(p, cs) +

1

β
· (D(N [p], p) +D(p, cs))

)
(using triangle property)

≤ 1

β
·
(

(1 +
1

β
) ·D(p, cs) +

1

αβ
·D(p,N [p])

)
(using symmetry property)

≤ 1

β
·
(

(1 +
1

β
) ·D(p, cs) +

1

αβ
·D(p, cs)

)
(since D(p,N [p]) ≤ D(p, cs))

≤ 3

αβ2
·D(p, cs) (8)

For the sake of contradiction, let us assume that |Ains | < |Aouts |. Let f be any
one-one function that maps data points in Ains to data points in Aouts .

For any point p ∈ Ains , the following inequalities hold:

D(p, cI[f(p)]) ≤
1

β
·
(
D(p, f(p)) +D(f(p), cI[f(p)])

)
(using triangle property)

≤ 1

β
·
(

1

β
· (D(p, cs) +D(cs, f(p))) +D(f(p), cI[f(p)])

)
(using triangle property)

≤ 1

β
·
(

1

β
·
(
D(p, cs) +

1

α
·D(f(p), cs)

)
+D(f(p), cI[f(p)])

)
(using symmetry property)

≤ 1

β
·
(

1

β
·
(
D(p, cs) +

1

α
·D(f(p), cs)

)
+

3

αβ2
·D(f(p), cs)

)
(using (8))

=

(
1

β2
·D(p, cs) +

4

αβ2
·D(f(p), cs)

)
(9)

Using (8) and (9), we get the following:∑
p∈Ain

s

D(p, cI[f(p)]) +
∑

p∈Aout
s

D(p, cI[p]) ≤
1

β2
·
∑
p∈Ain

s

D(p, cs) +
4

αβ2
·
∑
p∈Ain

s

D(f(p), cs) +

3

αβ2
·
∑

p∈Aout
s

D(p, cs)

≤ 1

β2
·
∑
p∈Ain

s

D(p, cs) +
7

αβ2
·
∑

p∈Aout
s

D(p, cs) (since f is one-one)

≤ 8

αβ2
·
∑
p∈As

D(p, cs) =
8

αβ2
· |As| · rs (10)



Using 10, we get that

φ{c1,...,ck}\cs(P )

φ{c1,...,ck}(P )
=

∑
t∈[k]\s |At| · rt + 8

αβ2 · |As| · rs∑
t∈[k] |At| · rt

≤ 8

αβ2

This contradicts with the fact that ∆k−1(P )/∆k(P ) ≥ 1 + γ = 1 + 32
(αβ)4 . This

concludes the proof of the claim. ut

We use the above claim to prove the Lemma. For any s ∈ J̄i and p ∈ Ains we
have

1

β
· (D(p, Ci) +D(cs, p)) ≥ D(cs, Ci) (using triangle property)

⇒ 1

β
·
(
D(p, Ci) +

1

α
·D(p, cs)

)
≥ D(cs, Ci) (using symmetry property)

⇒ 1

β
·
(
D(p, Ci) +

1

α
·D(p, Ci)

)
≥ D(cs, Ci) (using definition of Ains )

⇒ 2

αβ
·D(p, Ci) ≥ D(cs, Ci)

⇒ D(p, Ci) ≥
αβ

2
·D(cs, Ci)

⇒ D(p, Ci) ≥
αβ

2
·D(cs, c

′
Is)

⇒ D(p, Ci) ≥
(αβ)2

4
·D(cs, cIs) (using (6))

⇒ D(p, Ci) ≥
(αβ)2

4
· Vs

From this we get the following:∑
p∈Ain

s

D(p, Ci) ≥
(αβ)2

4
· |As|

2
· Vs (since |Ains | ≥ |As|/2 from previous claim)

⇒
∑
p∈As

D(p, Ci) ≥
(αβ)2

8
· Tmin (using (7))

⇒
∑
s∈J̄i

∑
p∈As

D(p, Ci) ≥ (k − i) · (αβ)2

8
· Tmin (since |J̄i| ≥ (k − i))

⇒ φCi
(X̄i) ≥ (k − i) · (αβ)2

8
· Tmin

This concludes the proof of Lemma 5. ut

Lemma 6. ∀i,Pr[Ei+1 | Ei] ≥ k−i
k−i+1



Proof. Pr[Ei+1 | Ei] is just the conditional probability that the (i+ 1)th center
is chosen from the set X̄i given that the first i centers are chosen from i different
optimal clusters. This probability can be expressed as

Pr[Ei+1 | Ei] = Exp

[
φCi

(X̄i)

φCi
(P )

| Ei
]

(11)

For the sake of contradiction, let us assume that

Exp

[
φCi

(X̄i)

φCi
(P )

| Ei
]

= Pr[Ei+1 | Ei] <
k − i

k − i+ 1
(12)

Applying Jensen’s inequality, we get the following:

1

Exp
[
φCi

(P )

φCi
(X̄i)
| Ei

] ≤ Exp

[
φCi(X̄i)

φCi
(P )

| Ei
]
<

k − i
k − i+ 1

This gives the following:

1 +
1

k − i
< Exp

[
φCi(P )

φCi
(X̄i)

| Ei
]

= Exp

[
φCi

(Xi) + φCi
(X̄i)

φCi(X̄i)
| Ei

]
= 1 + Exp

[
φCi

(Xi)

φCi
(X̄i)

| Ei
]

⇒ 1

k − i
≤ Exp

[
φCi(Xi)

(αβ)2

8 · (k − i) · Tmin
| Ei

]
(using Lemma 5)

≤ Exp[φCi
(Xi) | Ei]

(αβ)2

8 · (k − i) · Tmin

≤
4

(αβ)2 · φCOPT
(P )

(αβ)2

8 · (k − i) · Tmin
(using Lemma 3)

⇒ Tmin
φCOPT

(P )
≤ 32

(αβ)4
(13)

Let Imin be the index for which minj 6=Imin
(|AImin

| ·D(cImin
, cj)) is minimized.

Note that Tmin = minj 6=Imin
(|AImin

| · D(cImin
, cj)). Consider the set C ′ =

∪s 6=Imin
{cs}, i.e., all centers except the center of the Ithmin cluster. We will

compute the cost of C ′ with respect to P :

φC′(P )

φCOPT
(P )
≤ φCOPT

(P ) + Tmin
φCOPT

(P )
(using Centroid property)

≤ 1 +
32

(αβ)4
(using (13))

This contradicts with the fact that P satisfies ∆k−1(P )
∆k(P ) > 1 + 32

(αβ)4 . ut



3 Analysis of SampAlg without separation condition

In this section, we will show that SampAlg gives an O(1) approximation with
probability Ω(2−2k) for any data set. This holds with respect to any distance
measure that satisfies the α-symmetry and β-triangle inequality. Note that the
Centroid property is not required. This is stated more formally in the next
Theorem.

Theorem 2. Let 0 < α, β ≤ 1 be constants. Let D be a distance measure
over space X such that D satisfies α-approximate symmetry and β-approximate
triangle inequality. Let P ⊆ X be any set of n points from the space X . Then
SampAlg gives an O(1)-approximation with probability Ω(2−2k).

Proof. We will use the definitions and notations from the previous Section. Given
a set of centers Ci, we say that an optimal cluster Aj is “covered” if there
exists a center c′ ∈ C such that φ{c′}(Aj) ≤ 8

(αβ)2 · φ{cj}(Aj). Note that if

there is a set of centers C ′ such that all the optimal clusters are covered, then
φC′(P ) ≤ 8

(αβ)2 · φCOPT
(P ). We will show that, with probability Ω(2−2k), either

Ck covers all the optimal clusters or gives a constant approximation. Recall that
Ci denotes the set of centers after i centers are picked. Let Ri denote the set
of indices of optimal clusters that are covered by Ci. Let Yi = ∪j∈RiAj and
Ȳi = P \ Yi. The probability that (i + 1)th chosen center covers a previously

uncovered cluster is given by
φCi

(Ȳi)

φCi
(P ) . Suppose that

φCi
(Ȳi)

φCi
(P ) < 1/2. This implies

that φCi(Ȳi) < φCi(Yi). This further implies that

φCi(P ) = φCi(Ȳi)+φCi(Yi) < 2·φCi(Yi) ≤
16

(αβ)2
·φCOPT

(Yi) ≤
16

(αβ)2
·φCOPT

(P ).

The above basically means that the current set of centers already gives a constant
approximation with respect to the entire point set P . Choosing more centers will

only lower the cost. On the other hand, if
φCi

(Ȳi)

φCi
(P ) ≥ 1/2, then this implies that

with probability at least 1/2 the (i + 1)th center is from one of the uncovered
clusters. Conditioned on this, from Lemma 2 we know that with probability at
least 1/2, the newly chosen center covers a previously uncovered cluster. So, with
probability at least 1/4, a new cluster gets covered in step (i+ 1).

So, either the set of chosen centers Ck gives an approximation factor of
16

(αβ)2 or with probability at least 2−2k covers all optimal clusters. The latter

implies that Ck gives 8
(αβ)2 approximation. So, in summary, SampAlg gives an

16
(αβ)2 -approximation with probability at least 2−2k. ut

4 Conclusions and Open Problems

In this paper, we have shown that given that the data is separable in the

spirit of Ostrovsky et al. [10], i.e., ∆k−1(P )
∆k(P ) ≥ 1 + γ1 (for some fixed constant

γ1), then the k-means++ based sampling algorithm SampAlg gives an O(1)
approximation with probability Ω(1/k). On the other hand, Brunsch and Röglin



[8] gave an instance where SampAlg gives (2/3− ε) · log k approximation with
probability exponentially small in k. However, their instance is not separable,

i.e., ∆k−1(P )
∆k(P ) = 1 + γ2, where γ2 = o(1) and use high dimension. Some interesting

open questions are:

– How does SampAlg behave when 1 + γ2 ≤ ∆k−1(P )
∆k(P ) ≤ 1 + γ1?

– How does SampAlg behave for planar k-median instances (or in general low
dimensional instances)?

The planar (dimension = 2) k-means problem was shown to be NP-hard by
Mahajan et al. [9]. The lower-bound instances constructed by Arthur and Vassil-
vitskii [5], Aggarwal et al. [3], and Brunsch and Röglin [8] use high dimension.
So, it may be possible that SampAlg gives O(1) with high probability for any
planar k-means instances. Another interesting direction is to explore the behavior
of SampAlg when the data satisfies (c, ε)-closeness property of Balcan et al.
[6]. This property was argued to be weaker than the separability condition of
Ostrovsky et al. [10].
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8. Tobias Brunsch and Heiko Röglin. A bad instance for k-means++. In Pro-
ceedings of the 8th annual conference on Theory and applications of models of
computation (TAMC’11), pp. 344-352, 2011.

9. Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The Planar
k-Means Problem is NP-Hard. In Proceedings of the 3rd International Workshop
on Algorithms and Computation (WALCOM ’09), pp. 274-285. 2009.

10. Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy.
The effectiveness of lloyd-type methods for the k-means problem. In Proc. 47th
IEEE FOCS, pages 165–176, 2006.


