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k-means Clustering Problem

Problem (k-means)

Given n points X ⊂ Rd , and an integer k, find k points C ⊂ Rd

(called centers) such that the sum of squared Euclidean distance of
each point in X to its closest center in C is minimized. That is, the
following cost function is minimized:

ΦC (X ) =
∑
x∈X

min
c∈C

(
||x − c||2

)
Example: k = 4, d = 2
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k-means
Lower/Upper Bounds

Lower bounds:

The problem is NP-hard when k ≥ 2, d ≥ 2
[Das08, MNV12, Vat09].
Theorem [ACKS15]: There is a constant ε > 0 such that it is
NP-hard to approximate the k-means problem to a factor
better than (1 + ε).
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k-means
Lower/Upper Bounds

Lower bounds:

The problem is NP-hard when k ≥ 2, d ≥ 2
[Das08, MNV12, Vat09].
Theorem [ACKS15]: There is a constant ε > 0 such that it is
NP-hard to approximate the k-means problem to a factor
better than (1 + ε).

Upper bounds: There are various approximation algorithms for
the k-means problem.

Citation Approx. factor Running Time
[AV07] O(log k) polynomial time

[KMN+02] 9 + ε polynomial time

[KSS10, JKY15, FMS07] (1 + ε) O
(
nd · 2Õ(k/ε)

)
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k-means
Locality property

Clustering using the k-means formulation implicitly assumes
that the target clustering follows locality property that data
points within the same cluster are close to each other in some
geometric sense.

There are clustering problems arising in Machine Learning
where locality is not the only requirement while clustering.
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k-means
Locality property

Clustering using the k-means formulation implicitly assumes
that the target clustering follows locality property that data
points within the same cluster are close to each other in some
geometric sense.

There are clustering problems arising in Machine Learning
where locality is not the only requirement while clustering.

r -gather clustering: Each cluster should contain at least r
points.
Capacitated clustering: Cluster size is upper bounded.
l -diversity clustering: Each input point has an associated color
and each cluster should not have more that 1

l fraction of its
points sharing the same color.
Chromatic clustering: Each input point has an associated color
and points with same color should be in different clusters.
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k-means
Locality property

Clustering using the k-means formulation implicitly assumes
that the target clustering follows locality property that data
points within the same cluster are close to each other in some
geometric sense.

There are clustering problems arising in Machine Learning
where locality is not the only requirement while clustering.

r -gather clustering: Each cluster should contain at least r
points.
Capacitated clustering: Cluster size is upper bounded.
l -diversity clustering: Each input point has an associated color
and each cluster should not have more that 1

l fraction of its
points sharing the same color.
Chromatic clustering: Each input point has an associated color
and points with same color should be in different clusters.

A unified framework that considers all the above problems
would be nice.
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k-means
Locality property

There are clustering problems arising in Machine Learning where
locality is not the only requirement while clustering.

r -gather clustering: Each cluster should contain at least r points.
Capacitated clustering: Cluster size is upper bounded.
l -diversity clustering: Each input point has an associated color and
each cluster should not have more that 1

l fraction of its points
sharing the same color.
Chromatic clustering: Each input point has an associated color and
points with same color should be in different clusters.

A unified framework that considers all the above problems would be
nice.

Problem (Constrained k-means [DX15])

Given n points X ⊂ Rd , an integer k, and a set of constraints D, find k
clusters X1, ...,Xk such that (i) the clusters satisfy D and (ii) the
following cost function is minimized:

Ψ(X ) =
k∑

i=1

∑
x∈Xi

||x − Γ(Xi )||2, where Γ(Xi ) =

∑
x∈Xi

x

|Xi |
.
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Constrained k-means

Problem (k-means)

Given n points X ⊂ Rd , and an integer k, find k clusters X1, ...,Xk such
that the the following cost function is minimized:

Φ(X ) =
k∑

i=1

∑
x∈Xi

||x − Γ(Xi )||2, where Γ(Xi ) =

∑
x∈Xi

x

|Xi |
.

Problem (Constrained k-means [DX15])

Given n points X ⊂ Rd , an integer k, and a set of constraints D, find k
clusters X1, ...,Xk such that (i) the clusters satisfy D and (ii) the
following cost function is minimized:

Ψ(X ) =
k∑

i=1

∑
x∈Xi

||x − Γ(Xi )||2, where Γ(Xi ) =

∑
x∈Xi

x

|Xi |
.

Fact

For any X ⊂ Rd and any point p ∈ Rd ,∑
x∈X ||x − p||2 =

∑
x∈X ||x − Γ(X )||2 + |X | · ||Γ(X )− p||2.
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Constrained k-means

Problem (k-means)

Given n points X ⊂ Rd , and an integer k, find k centers C ⊂ Rd such
that the the following cost function is minimized:

ΦC (X ) =
∑
x∈X

min
c∈C

(
||x − c ||2

)
Problem (Attempted formulation in terms of centers)

Given n points X ⊂ Rd , an integer k, and a set of constraints D, find k
centers C ⊂ Rd such that...
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Constrained k-means

Problem (k-means)

Given n points X ⊂ Rd , and an integer k, find k centers C ⊂ Rd such
that the the following cost function is minimized:

ΦC (X ) =
∑
x∈X

min
c∈C

(
||x − c ||2

)
Problem (Constrained k-means [DX15])

Given n points X ⊂ Rd , an integer k, a set of constraints D, and a
partition algorithm AD, find k centers C ⊂ Rd such that the following
cost function is minimized:

Ψ(X ) =
k∑

i=1

∑
x∈Xi

||x − Γ(Xi )||2, where (X1, ...,Xk)← AD(C ,X ).

Partition Algorithm [DX15]

Given a dataset X , constraints D, and centers C = (c1, ..., ck), the
partition algorithm AD(C ,X ) outputs a clustering (X1, ...,Xk) of X such
that (i) all clusters Xi satisfy D and (ii) the following cost function is
minimized:

cost(AD(C ,X )) =
k∑

i=1

∑
x∈Xi

||x − ci ||2.
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Constrained k-means

Partition Algorithm [DX15]

Given a dataset X , constraints D, and centers C = (c1, ..., ck), the
partition algorithm AD(C ,X ) outputs a clustering (X1, ...,Xk) of X such
that (i) all clusters Xi satisfy D and (ii) the following cost function is
minimized:

cost(AD(C ,X )) =
k∑

i=1

∑
x∈Xi

||x − ci ||2.

What is a partition algorithm for the k-means problem where there
are no constraints on the clusters?
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Constrained k-means

Partition Algorithm [DX15]

Given a dataset X , constraints D, and centers C = (c1, ..., ck), the
partition algorithm AD(C ,X ) outputs a clustering (X1, ...,Xk) of X such
that (i) all clusters Xi satisfy D and (ii) the following cost function is
minimized:

cost(AD(C ,X )) =
k∑

i=1

∑
x∈Xi

||x − ci ||2.

What is a partition algorithm for the k-means problem where there
are no constraints on the clusters?

Voronoi partitioning algorithm.
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Constrained k-means

Partition Algorithm [DX15]

Given a dataset X , constraints D, and centers C = (c1, ..., ck), the
partition algorithm AD(C ,X ) outputs a clustering (X1, ...,Xk) of X such
that (i) all clusters Xi satisfy D and (ii) the following cost function is
minimized:

cost(AD(C ,X )) =
k∑

i=1

∑
x∈Xi

||x − ci ||2.

Partition algorithm for r -gather clustering [DX15]:

Constraint: Each cluster should have at least r points.

Figure : Partition algorithm: Minimum cost circulation.
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Constrained k-means

Problem (Constrained k-means [DX15])

Given n points X ⊂ Rd , an integer k, a set of constraints D, and a
partition algorithm AD, find k centers C ⊂ Rd such that the following cost
function is minimized:

Ψ(X ) =
k∑

i=1

∑
x∈Xi

||x − Γ(Xi )||2, where (X1, ...,Xk)← AD(C ,X ).

Partition Algorithm [DX15]

Given a dataset X , constraints D, and centers C = (c1, ..., ck), the
partition algorithm AD(C ,X ) outputs a clustering (X1, ...,Xk) of X such
that (i) all clusters Xi satisfy D and (ii) the following cost function is
minimized:

cost(AD(C ,X )) =
k∑

i=1

∑
x∈Xi

||x − ci ||2.

Theorem (Main result in [DX15]): There is a (1 + ε)-approximation

algorithm that runs in time O(ndL + L · T (AD)), where T (AD)
denotes running time of AD and L = (log n)k · 2poly(k/ε).
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Constrained k-means

Problem (Constrained k-means [DX15])

Given n points X ⊂ Rd , an integer k, a set of constraints D, and a
partition algorithm AD, find k centers C ⊂ Rd such that the following cost
function is minimized:

Ψ(X ) =
k∑

i=1

∑
x∈Xi

||x − Γ(Xi )||2, where (X1, ...,Xk)← AD(C ,X ).

Partition Algorithm [DX15]

Given a dataset X , constraints D, and centers C = (c1, ..., ck), the
partition algorithm AD(C ,X ) outputs a clustering (X1, ...,Xk) of X such
that (i) all clusters Xi satisfy D and (ii) the following cost function is
minimized:

cost(AD(C ,X )) =
k∑

i=1

∑
x∈Xi

||x − ci ||2.

Theorem (Main result in [DX15]): There is a (1 + ε)-approximation

algorithm that runs in time O(ndL + L · T (AD)), where T (AD)
denotes running time of AD and L = (log n)k · 2poly(k/ε).
Theorem (Our Main Result): There is a (1 + ε)-approximation

algorithm that runs in time O(ndL + L · T (AD)), where T (AD)

denotes running time of AD and L = 2Õ(k/ε).
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Constrained k-means

A common theme for all PTAS

Theorem (Main result in [DX15]): There is a (1 + ε)-approximation algorithm that runs in

time O(ndL + L · T (AD)), where T (AD) denotes running time of AD and
L = (log n)k · 2poly(k/ε).
Theorem (Our Main Result): There is a (1 + ε)-approximation algorithm that runs in time

O(ndL + L · T (AD)), where T (AD) denotes running time of AD and L = 2Õ(k/ε).
Running time of (1 + ε)-approximation algorithms for k-means:

Citation Approx. factor Running Time
[AV07] O(log k) polynomial time
[KMN+02] 9 + ε polynomial time

[KSS10, JKY15, FMS07] (1 + ε) O
(
nd · 2Õ(k/ε)

)

How do these (1 + ε)-approximation algorithms work?

Enumerate a list of k-centers, C1, ...,Cl and then uses AD to pick the
best one.
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List k-means

Problem (List k-means)

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Given X , k and ε, find a list of k-centers, C1, ...,Cl such that for at
least one index j ∈ {1, ..., l}, we have

k∑
i=1

∑
x∈Xi

||x − ci ||2 ≤ (1 + ε) · OPT ,

where Cj = (c1, ..., ck). Note that OPT =
∑k

i=1

∑
x∈Xi
||x − Γ(Xi )||2.

Observation: Solution to the List k-means problem gives a solution to
the constrained k-means problem.
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List k-means

Problem (List k-means)

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Given X , k and ε, find a list of k-centers, C1, ...,Cl such that for at
least one index j ∈ {1, ..., l}, we have

k∑
i=1

∑
x∈Xi

||x − ci ||2 ≤ (1 + ε) · OPT ,

where Cj = (c1, ..., ck). Note that OPT =
∑k

i=1

∑
x∈Xi
||x − Γ(Xi )||2.

Is outputting a list a necessary requirement?
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Problem (List k-means)

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Given X , k and ε, find a list of k-centers, C1, ...,Cl such that for at
least one index j ∈ {1, ..., l}, we have
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∑
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where Cj = (c1, ..., ck). Note that OPT =
∑k
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x∈Xi
||x − Γ(Xi )||2.

Is outputting a list a necessary requirement?

Attempted problem definition without list

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Given X , k and ε, find k-centers C such that:

k∑
i=1

∑
x∈Xi

||x − ci ||2 ≤ (1 + ε) · OPT ,

where C = (c1, ..., ck). Note that OPT =
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∑
x∈Xi
||x − Γ(Xi )||2.
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List k-means

Is outputting a list a necessary requirement?
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List k-means

Problem (List k-means)

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Given X , k and ε, find a list of k-centers, C1, ...,Cl such that for at
least one index j ∈ {1, ..., l}, we have

k∑
i=1

∑
x∈Xi

||x − ci ||2 ≤ (1 + ε) · OPT ,

where Cj = (c1, ..., ck). Note that OPT =
∑k

i=1

∑
x∈Xi
||x − Γ(Xi )||2.

We can formulate an existential question related to the size of such a
list.

Question

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Let L be the size of the smallest list of k centers such that there is
at least one element (c1, ..., ck) in this list such that∑k

i=1

∑
x∈Xi
||x − ci ||2 ≤ (1 + ε) · OPT . What is the value of L?

Ragesh Jaiswal Faster Algorithms for the Constrained k-means Problem



List k-means

Problem (List k-means)

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Given X , k and ε, find a list of k-centers, C1, ...,Cl such that for at
least one index j ∈ {1, ..., l}, we have

k∑
i=1

∑
x∈Xi

||x − ci ||2 ≤ (1 + ε) · OPT ,

where Cj = (c1, ..., ck). Note that OPT =
∑k

i=1

∑
x∈Xi
||x − Γ(Xi )||2.

We can formulate an existential question related to the size of such a
list.

Question

Let X ⊂ Rd , k be an integer, ε > 0 and X1, ...,Xk be an arbitrary partition
of X . Let L be the size of the smallest list of k centers such that there is
at least one element (c1, ..., ck) in this list such that∑k

i=1

∑
x∈Xi
||x − ci ||2 ≤ (1 + ε) · OPT . What is the value of L?

Our results:

Lower bound: Ω

(
2

Ω̃
(

k√
ε

))
.

Upper bound: O
(

2Õ( k
ε )
)

.
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List k-means

Our results:

Lower bound: Ω

(
2

Ω̃
(

k√
ε

))
.

Upper bound: O
(

2Õ( k
ε )
)

.

Solving k-means via list k-means

Any (1 + ε)-approximation algorithm that solves k-means or constrained
k-means via solving list k-means (which in fact all known algorithms do),

then its running time cannot be smaller than nd · 2Ω̃(k/
√
ε).

This explains the common running time expression for all known
(1 + ε)-approximation algorithms.

Citation Approx. factor Running Time
[AV07] O(log k) polynomial time

[KMN+02] 9 + ε polynomial time

[KSS10, JKY15, FMS07] (1 + ε) O
(
nd · 2Õ(k/ε)

)
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Main ideas for upper bound
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List k-means: upper bound
A crucial lemma

Lemma ([IKI94])

Let S be a set of s point sampled independently from any given point
set X ⊂ Rd uniformly at random. Then for any δ > 0, the following
holds with probability at least (1− δ):

ΦΓ(S)(X ) ≤
(

1 +
1

δ · s

)
· ΦΓ(X )(X ), where Γ(X ) =

∑
x∈X x

|X |

Figure : The cost w.r.t. the centroid (blue triangle) of all points (blue dots) is close to
the cost w.r.t. the centroid (green triangle) of a few randomly chosen points (green dots).
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List k-means: upper bound
Main ideas

Consider the following simple case where the clusters are separated.
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List k-means: upper bound
Main ideas

We randomly sample N points.
Then consider all possible subsets of the sampled points of size
M < N.
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List k-means: upper bound
Main ideas

One of these subsets represents a uniform sample from the largest
cluster.
The centroid of this subset is a good center for this cluster.
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List k-means: upper bound
Main ideas

At this point, we are done with the first cluster and would like to
repeat.
Sampling uniformly at random is not a good idea as other clusters
might be small.

Ragesh Jaiswal Faster Algorithms for the Constrained k-means Problem



List k-means: upper bound
Main ideas

Solution: We sample using D2-sampling. That is, we sample using a
non-uniform distribution that gives preference to points that are
further away from the current centers.
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List k-means: upper bound
Main ideas

Again, we consider all possible subsets and one of these subsets
behaves like a uniform sample from a target cluster.
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List k-means: upper bound
Main ideas

So, the centroid of this subset if a good center for this cluster.
Now,we just repeat.
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List k-means: upper bound
Main ideas

Consider a more complicated case where the target clusters are not
well separated.
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List k-means: upper bound
Main ideas

Again, we start by sampling uniformly at random.
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List k-means: upper bound
Main ideas

Again, we start by sampling uniformly at random and considering all
possible subsets.
One of these subsets behave like a uniform sample from the largest
cluster and its centroid is good for this cluster.
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List k-means: upper bound
Main ideas

Now we are done with the largest cluster and we do a D2-sampling.
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List k-means: upper bound
Main ideas

Now we are done with the largest cluster and we do a D2-sampling.
Unfortunately, due to poor separability, none of the subsets behave
like a uniform sample from the second cluster.
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List k-means: upper bound
Main ideas

Unfortunately, due to poor separability, none of the subsets behave
like a uniform sample from the second cluster.
So, we may end up not obtaining a good center for the second cluster.
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List k-means: upper bound
Main ideas

So, we may end up not obtaining a good center for the second cluster.
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List k-means: upper bound
Main ideas

So, we may end up not obtaining a good center for the second cluster.
This is an undesirable result.
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List k-means: upper bound
Main ideas

Let us go back, the reason that D2-sampling is unable to pick
uniform samples from the second cluster is that some points of the
cluster is close to the first chosen center.
What we do is create multiple copies of the first center and add it to
the set of points from which all possible subsets are considered.
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List k-means: upper bound
Main ideas

These multiple copies act as proxy for the points that are close to the
first center.
Now, one of the subsets behave like a uniform sample and we get a
good center.
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List k-means: upper bound
Main ideas

And now we just repeat.
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Conclusion

We also get (1 + ε)-approximation algorithm for the k-median

problem with running time O

(
nd · 2Õ

(
k

εO(1)

))
.

Our algorithm and analysis easily extends to distance measures
that satisfy certain “metric like” properties. This includes:

Mahalanobis distance
µ-similar Bregman divergence

Open Problems:

Matching upper and lower bounds for list k-median problem.
Faster algorithms for specific versions of constrained k-means
problem that are designed without going via the list k-means
route.
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