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k-means Clustering

Problem (k-means)

Given n points X ⊂ Rd , and an integer k, find k points C ⊂ Rd

(called centers) such that the sum of squared Euclidean distance of
each point in X to its closest center in C is minimized. That is, the
following cost function is minimized:

Φ(C ,X ) =
∑
x∈X

min
c∈C

(
||x − c ||2

)
Example: k = 4, d = 2
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k-means Clustering
Lower/Upper Bounds

Lower bounds:

The problem is NP-hard when k ≥ 2, d ≥ 2
[Das08, MNV12, Vat09].
Theorem [ACKS15]: There is a constant ε > 0 such that it is
NP-hard to approximate the k-means problem to a factor
better than (1 + ε).
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k-means Clustering
Lower/Upper Bounds

Lower bounds:

The problem is NP-hard when k ≥ 2, d ≥ 2
[Das08, MNV12, Vat09].
Theorem [ACKS15]: There is a constant ε > 0 such that it is
NP-hard to approximate the k-means problem to a factor
better than (1 + ε).

Upper bounds: There are various approximation algorithms for
the k-means problem.

Citation Approx. factor Running Time
[AV07] O(log k) polynomial time

[KMN+02] 9 + ε polynomial time

[KSS10, JKY15, FMS07] (1 + ε) O
(
nd · 2Õ(k/ε)

)
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k-means Clustering
Beyond worst case

Various results of “beyond worst-case” flavour have been
attempted in the context of the k-means and clustering
problems in general.

Mixture of Gaussians.
Clustering under separation assumptions on the dataset. The
working philosophy is that a dataset is clusterable only when it
satisfies some separation.

ORSS separation [ORSS13]
BBG approximate stability [BBG13]
. . .
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k-means Clustering
Beyond worst case

“Beyond worst-case”

Mixture of Gaussians.
Clustering under separation.
Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries” during its execution.
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Semi-Supervised Active Clustering (SSAC)
Same-cluster queries

“Beyond worst-case”
Mixture of Gaussians.
Clustering under separation.
Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries” during its execution.

Semi-Supervised Active Clustering (SSAC) [AKBD16]: The

clustering algorithm is given the dataset X ⊂ Rd and integer
k (as in the classical setting) and it can make same-cluster
queries.
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Semi-Supervised Active Clustering (SSAC)
Same-cluster queries

SSAC framework: Same-cluster queries.

A limited number of such queries (or some weaker version)
may be feasible in certain settings.
So, understanding the power and limitations of this idea may
open interesting future directions.

Figure: SSAC framework: same-cluster queries
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Semi-Supervised Active Clustering (SSAC)
Known results

Clearly, we can output optimal clustering using O(n2)
same-cluster queries. Can we cluster using fewer queries?

The following result is already known for the SSAC setting.

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(kn log n) and
makes O(k2 log k + k log n) same-cluster queries and returns the
optimal clustering for a dataset that satisfies some separation
guarantee.
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Semi-Supervised Active Clustering (SSAC)
Known results

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(kn log n) and
makes O(k2 log k + k log n) same-cluster queries and returns the
optimal clustering for a dataset that satisfies some separation
guarantee.

A few things to note about the above result:

This is an exact clustering result.
The result holds given that the input datasets satisfies a
separation guarantee.
Finally, the number of same-cluster queries is not independent
of the data size n.
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Semi-Supervised Active Clustering (SSAC)
Our contributions

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(kn log n) and
makes O(k2 log k + k log n) same-cluster queries and returns the
optimal clustering for a dataset that satisfies some separation
guarantee.

A few things to note about the above result:

This is an exact clustering result.
The result holds given that the input datasets satisfies a separation
guarantee.
Finally, the number of same-cluster queries is not independent of
the data size n.

Our contributions (informal):

We extend the theory to the approximation setting while removing
the separation requirement.
We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.
We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.
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Semi-Supervised Active Clustering (SSAC)
Our contributions

Our contributions (informal):

We extend the theory to the approximation setting while removing
the separation requirement.
We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.
We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.

Theorem (Main result)

Let 0 < ε < 1/2. There is a randomised query algorithm that returns
a (1 + ε) approximate clustering for any given dataset. The algorithm
runs in time O(nd · poly(k/ε)) makes poly(k/ε) same-cluster queries.
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Semi-Supervised Active Clustering (SSAC)
Our contributions

Our contributions (informal):

We extend the theory to the approximation setting while removing
the separation requirement.
We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.
We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.

Theorem (Main result)

Let 0 < ε < 1/2. There is a randomised query algorithm that returns
a (1 + ε) approximate clustering for any given dataset. The algorithm
runs in time O(nd · poly(k/ε)) makes poly(k/ε) same-cluster queries.

Theorem (Main result - query lower bound)

If ETH holds, then there exists a constant c > 1 such that any
c-approximation query algorithm that runs in time poly(n, k , d) makes
at least k/polylog(k) same-cluster queries.
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Semi-Supervised Active Clustering (SSAC)
Our contributions

Our contributions (informal):

We extend the theory to the approximation setting while removing
the separation requirement.
We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.
We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.

Theorem (Main result)

Let 0 < ε < 1/2. There is a randomised query algorithm that returns
a (1 + ε) approximate clustering for any given dataset. The algorithm
runs in time O(nd · poly(k/ε)) makes poly(k/ε) same-cluster queries.

The above result can be extended to a setting where the response
to every same-cluster query is incorrect with probability at most
q < 1/2.

Theorem (Main result - query lower bound)

If ETH holds, then there exists a constant c > 1 such that any
c-approximation query algorithm that runs in time poly(n, k , d) makes
at least k/polylog(k) same-cluster queries.
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Main ideas for Query Algorithm
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Query Algorithm
A crucial lemma

Lemma ([IKI94])

Let S be a set of s point sampled independently from any given point
set X ⊂ Rd uniformly at random. Then for any δ > 0, the following
holds with probability at least (1− δ):

Φ(Γ(S),X ) ≤
(

1 +
1

δ · s

)
· Φ(Γ(X ),X ), where Γ(X ) =

∑
x∈X x

|X |

Figure: The cost w.r.t. the centroid (blue triangle) of all points (blue dots) is close to the
cost w.r.t. the centroid (green triangle) of a few randomly chosen points (green dots).
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Query Algorithm
Main idea

Easy case: The optimal clusters have roughly the same size.

The query algorithm samples poly(k/ε) points uniformly from the
dataset and uses same-cluster queries to partition them into
subsets of optimal clusters.
The mean of the partitions will be good centers using [IKI94]
lemma since each partition contains Ω(1/ε) points.
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Query Algorithm
Main idea

The query algorithm samples poly(k/ε) points uniformly from the
dataset and uses same-cluster queries to partition them into
subsets of optimal clusters.
The mean of the partitions will be good centers using [IKI94]
lemma since each partition contains Ω(1/ε) points.
The above idea fails if some clusters are small compared to other
clusters as below.
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Query Algorithm
Main idea

Difficult (general) case: Some clusters are small compared to
other clusters.

Main idea: After finding the first center using uniform sampling
find subsequent centers using D2-sampling.

D2-sampling: Biased sampling that gives preference to points that
are far from the already chosen centers.
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Other Results

Query lower bounds:

The query lower bound is obtained by showing that any
approximation algorithm whose running time has polynomial
dependence on n and d will have exponential dependence on k.

ETH → PCP → VC in triangle-free graphs
[ACKS15]→ k-means.

Faulty-query setting:

Crucially uses results about recovering clusters in Stochastic
Block Model.

k-means++ variant:

The ideas also gives very simple constant factor approximation
algorithms in the SSAC framework using the well-known
k-means++ algorithm.
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Future Directions

Future directions:

Gap in query upper and lower bounds.
Faulty-query setting.
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