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Main Result

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according to

the length-squared distribution, contains a rank-1 matrix that gives a
(1 + ε) multiplicative approximation under the Frobenius norm.

Length-squared distribution: The probability of sampling the i th

row, A(i), is proportional to ‖A(i)‖2.
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The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according to

the length-squared distribution, contains a rank-1 matrix that gives a
(1 + ε) multiplicative approximation under the Frobenius norm.

Length-squared distribution: The probability of sampling the i th

row, A(i), is proportional to ‖A(i)‖2.

Theorem (Main Theorem)

Let 0 < ε < 1. Let S be a sample of s rows of an n× d matrix A, each
chosen independently with length-squared distribution. If s = Ω( 1

ε4 ),

then the span of S contains a matrix Ã of rank-1 such that:

E[‖A− Ã‖2
F ] ≤ (1 + ε) · ‖A− π1(A)‖2

F , where

π1(A) = argmin
X :rank(X )=1

‖A− X‖2
F

Ragesh Jaiswal Rank-1 approximation using length-squared sampling



Discussion: Best Fit Line

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according

to the length-squared distribution, contains a rank-1 matrix that
gives a (1 + ε) multiplicative approximation under the Frobenius
norm.

Best Fit Line Problem (interpret rows as points)
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Discussion: Best Fit Line

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according

to the length-squared distribution, contains a rank-1 matrix that
gives a (1 + ε) multiplicative approximation under the Frobenius
norm.

Best Fit Line Problem (interpret rows as points)

The problem is not hard.
The solution is the first singular vector and can be found using
SVD.
This discussion is about simple sampling based technique.

Ragesh Jaiswal Rank-1 approximation using length-squared sampling



Discussion: Best Fit Line

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according

to the length-squared distribution, contains a rank-1 matrix that
gives a (1 + ε) multiplicative approximation under the Frobenius
norm.

Best Fit Line Problem (interpret rows as points)

This discussion is about simple sampling based technique.

Question: Can we approximate the best-fit line using a few
samples?
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Discussion: Best Fit Line

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according

to the length-squared distribution, contains a rank-1 matrix that
gives a (1 + ε) multiplicative approximation under the Frobenius
norm.

Best Fit Line Problem (interpret rows as points)

Question: Can we approximate the best-fit line using a few
samples?

Non-constructive: Yes using O( 1
ε log 1

ε ) samples [SV12].
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Discussion: Best Fit Line

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according

to the length-squared distribution, contains a rank-1 matrix that
gives a (1 + ε) multiplicative approximation under the Frobenius
norm.

Best Fit Line Problem (interpret rows as points)

Question: Can we approximate the best-fit line using a few
uniformly sampled points?

No. See example below.
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Discussion: Best Fit Line

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according

to the length-squared distribution, contains a rank-1 matrix that
gives a (1 + ε) multiplicative approximation under the Frobenius
norm.

Best Fit Line Problem (interpret rows as points)

Question: Can we approximate the best-fit line using a few
uniformly sampled points?

No. See example below.
This motivates length-squared sampling since the distance of a
point from origin is relevant.
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Discussion: Known Results

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according to

the length-squared distribution, contains a rank-1 matrix that gives a
(1 + ε) multiplicative approximation under the Frobenius norm.

Length-squared distribution: The probability of sampling the i th

row, A(i), is proportional to ‖A(i)‖2.
Question: What was known about length-squared sampling in the
current context?
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Discussion: Known Results

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according to

the length-squared distribution, contains a rank-1 matrix that gives a
(1 + ε) multiplicative approximation under the Frobenius norm.

Length-squared distribution: The probability of sampling the i th

row, A(i), is proportional to ‖A(i)‖2.
Question: What was known about length-squared sampling in the
current context? Additive approximation

Theorem (Freize, Kannan, and Vempala [FKV04])

Let 0 < ε < 1. Let S be a sample of s rows of an n × d matrix A,
each chosen independently with length-squared distribution. If
s = Ω( 1

ε ), then the span of S contains a matrix Ã of rank-1 such that:

E[‖A− Ã‖2
F ] ≤ ‖A− π1(A)‖2

F + ε · ‖A‖2
F .
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Discussion: Known Results

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according to

the length-squared distribution, contains a rank-1 matrix that gives a
(1 + ε) multiplicative approximation under the Frobenius norm.

Length-squared distribution: The probability of sampling the i th

row, A(i), is proportional to ‖A(i)‖2.
Question: What was known about length-squared sampling in the
current context? Additive approximation
Question: Does some other sampling technique give a
multiplicative approximation?
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Discussion: Known Results

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according to

the length-squared distribution, contains a rank-1 matrix that gives a
(1 + ε) multiplicative approximation under the Frobenius norm.

Length-squared distribution: The probability of sampling the i th

row, A(i), is proportional to ‖A(i)‖2.
Question: What was known about length-squared sampling in the
current context? Additive approximation
Question: Does some other sampling technique give a
multiplicative approximation?

Yes. Adaptive length-squared sampling along with volume
sampling gives multiplicative approximation with O( 1

ε )
samples [DV06, DRVW06].
The above even works for rank-k approximation.
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Discussion: Our Result

Main result (informal)

The span of Ω( 1
ε4 ) rows of any matrix A ⊂ Rn×d sampled according to

the length-squared distribution, contains a rank-1 matrix that gives a
(1 + ε) multiplicative approximation under the Frobenius norm.

Length-squared distribution: The probability of sampling the i th

row, A(i), is proportional to ‖A(i)‖2.
Question: What was known about length-squared sampling in the
current context? Additive approximation
Question: Does some other sampling technique give a
multiplicative approximation?

Yes. Adaptive length-squared sampling along with volume
sampling gives multiplicative approximation with O( 1

ε )
samples [DV06, DRVW06].
The above even works for rank-k approximation.

This work: Does length-squared sampling suffice for
multiplicative rank-1 approximation? Yes with O( 1

ε4 ) samples.
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Discussion: Main Ideas

Theorem (Main Theorem)

Let 0 < ε < 1. Let S be a sample of s rows of an n× d matrix A, each
chosen independently with length-squared distribution. If s = Ω( 1

ε4 ),

then the span of S contains a matrix Ã of rank-1 such that:

E[‖A−Ã‖2
F ] ≤ (1+ε)·‖A−π1(A)‖2

F , where π1(A) = argmin
X :rank(X )=1

‖A−X‖2
F .

Let σ2 ≡ ‖π1(A)‖2
F and r2 ≡ ‖A− π1(A)‖2

F .

By a suitable rotation, we can assume that π1(A) =

(
σu1,0,...,0

...
σu2,0,...,0

)
We do a case analysis:

Case 1: (r2 > ε3σ2): Apply additive approximation of Freize,
Kannan and Vempala [FKV04].
Case 2: (r2 ≤ ε3σ2):

Theorem (Freize, Kannan, and Vempala [FKV04])

Let 0 < ε < 1. Let S be a sample of s rows of an n × d matrix A,
each chosen independently with length-squared distribution. If
s = Ω( 1

ε ), then the span of S contains a matrix Ã of rank-1 such that:

E[‖A− Ã‖2
F ] ≤ ‖A− π1(A)‖2

F + ε · ‖A‖2
F .
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Discussion: Main Ideas

Theorem (Main Theorem)

Let 0 < ε < 1. Let S be a sample of s rows of an n× d matrix A, each
chosen independently with length-squared distribution. If s = Ω( 1

ε4 ),

then the span of S contains a matrix Ã of rank-1 such that:

E[‖A−Ã‖2
F ] ≤ (1+ε)·‖A−π1(A)‖2

F , where π1(A) = argmin
X :rank(X )=1

‖A−X‖2
F .

Let σ2 ≡ ‖π1(A)‖2
F and r2 ≡ ‖A− π1(A)‖2

F .

By a suitable rotation, we can assume that π1(A) =

(
σu1,0,...,0

...
σu2,0,...,0

)
We do a case analysis:

Case 1: (r2 > ε3σ2): Apply additive approximation of Freize,
Kannan and Vempala [FKV04].
Case 2: (r2 ≤ ε3σ2): Lots of careful calculations!
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Possible extensions and applications

Projective clustering: Fitting k , j-dimensional flats to a given
dataset.

Note that fitting k , 0-dimensional flats is the classical k-means
problem and fitting k , 1-dimensional flats is the k-lines
problem.
Idea: Extending the sampling based ideas, being developed for
k-means, to projective clustering.
Issues: Not clear if sampling helps in fitting even 1,
2-dimensional flat. The sampling based analysis breaks down
even for fitting k , 1-dimensional flats (i.e., the k-lines
problem).

Streaming setting: Much better sketching based algorithms
exist for rank-k approximation.
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Observations and open problems

Observation 1: A single length-squared sampled point gives a
2 factor approximation in expectation.

Observation 2: Length-squared sampling does not work for
rank-k approximation for k > 1.

Open question 1: Our multiplicative approximation uses

O( 1
ε4 ) samples. Are these many samples necessary?

Open question 2: Can we get multiplicative approximation
using just adaptive length-squared sampling?
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