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Abstract

We develop CALM, a coordination analyzer that improves upon the conjuncts identified from
dependency parses. It uses a language model based scoring and several linguistic constraints to
search over hierarchical conjunct boundaries (for nested coordination). By splitting a conjunctive
sentence around these conjuncts, CALM outputs several simple sentences. We demonstrate the
value of our coordination analyzer in the end task of Open Information Extraction (Open IE).

State-of-the-art Open IE systems lose substantial yield due to ineffective processing of conjunc-
tive sentences. Our Open IE system, CALMIE, performs extraction over the simple sentences
identified by CALM to obtain up to 1.8x yield with a moderate increase in precision compared to
extractions from original sentences.

1 Introduction

Open Information Extraction (Open IE) (Etzioni et al., 2008) extracts relational tuples from text in an
unsupervised domain-independent manner, by identifying relational phrases and arguments from the
sentences themselves. Recent work (Saha et al., 2017) has highlighted the lack of proper conjunction
processing as the most significant source of missed yield in Open IE. We found Open IE 4.2 (Christensen
et al., 2011; Pal and Mausam, 2016) and ClausIE (Corro and Gemulla, 2013) to frequently miss important
extractions due to conjunctive relation phrases (see Table 1), and occasionally output conjunctive argu-
ments, which are not ideal for readability or downstream applications (Angeli et al., 2015; Stanovsky et
al., 2016a).

Most modern Open IE systems process dependency parses to obtain extractions. However, dependency
parsers frequently make errors in resolving coordination ambiguity. Predicting the correct conjunct span
is considered to be one of the biggest challenges for parsers (Ficler and Goldberg, 2016). The state of the
art approach by Ficler and Goldberg (2016) trains an LSTM-based network for predicting the boundaries
for the two conjuncts on either side of the coordinating conjunction, but does not handle cases where a
conjunction coordinates more than two conjuncts.
Contributions: We propose a novel coordination analyzer called CALM (Coordination Analyzer us-
ing Language Model), which corrects the typical errors made by dependency parsers (specifically Clear
parser, which is used in Open IE 4.2) using additional features and linguistic constraints. Under the in-
tuition that one can split a conjunction to form multiple coherent simple sentences (see Table 2), CALM

scores each simple sentence using a (modified) language model. It additionally employs several linguis-
tic constraints to reduce errors further. An important linguistic constraint is that multiple coordination
structures in a sentence must either be disjoint or completely nested. A key contribution of our work
is operationalizing this constraint through a novel hierarchical coordination tree, which is helpful in
sentences with multiple coordinations. Experiments on 577 conjunctive sentences in British News Cor-
pus demonstrate that CALM improves upon the conjuncts from the parser, with significant benefits for
sentences with multiple coordinations.

∗Most work was done when Swarnadeep Saha was a graduate student at Indian Institute of Technology, Delhi.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:

//creativecommons.org/licenses/by/4.0/



”Gates, an American investor and co-founder of Microsoft, stepped down as CEO of
Microsoft in January 2000, but remained as chairman and created the position of chief

software architect for himself and transferred his duties to Ray Ozzie and Craig Mundie.”
Extraction Systems

1. (Gates; stepped down as; CEO of Microsoft) [Cm, O4, C]
2. (Gates; stepped down as CEO of Microsoft; in January 2000) [Cm, O4]

3. (Gates; is; an American investor) [Cm]
4. (Gates; is an investor from; United States) [Cm, O4]

5. (Gates; is co-founder of; Microsoft) [Cm]
6. (Gates; is; an American investor and co-founder of Microsoft) [C]

7. (Gates; remained as; chairman) [Cm, O4, C]
8. (Gates; created; the position of chief software architect for himself) [Cm, O4, C]

9. (Gates; transferred; his duties) [Cm]
10. (Gates; transferred his duties to; Ray Ozzie) [Cm]

11. (Gates; transferred his duties to; Craig Mundie) [Cm]
12. (His; has; duties) [C]

13. (Gates; transferred his duties to Ray Ozzie;
the position of chief software architect for himself) [C]

14. (Gates; transferred his duties to Craig Mundie;
the position of chief software architect for himself) [C]

Table 1: Comparison of extractions of different systems on a conjunctive sentence. [Cm] : CALMIE(O) , [O4] : Open IE4.2,
[C] : ClausIE. Green = correct, Red = incorrect.

Gates, an American investor, stepped down as CEO of Microsoft in January 2000.
Gates, co-founder of Microsoft, stepped down as CEO of Microsoft in January 2000.

Gates remained as chairman.
Gates created the position of chief software architect for himself.

Gates transferred his duties to Ray Ozzie.
Gates transferred his duties to Craig Mundie.

Table 2: Simple sentences generated by our system for the conjunctive sentence in Table 1.

We use CALM’s output for the goal of improving Open IE. Our system, CALMIE, splits a sentence
into multiple simple sentences for each distributive coordination and pass those to two state-of-the-art
Open IE systems, Open IE 4.2 and ClausIE. We call them CALMIE(O) and CALMIE(C) respectively. We
evaluate on two different datasets and find that CALMIE(O) and CALMIE(C) always outperforms Open
IE 4.2 and ClausIE respectively. CALMIE(O) particularly achieves 1.8x the yield with a 5 pt precision
gain against Open IE 4.2 on a random sample of 100 conjunctive sentences from ClueWeb. Finally, we
compare CALM with Ficler’s system. On the subset of cases where a conjunction coordinates more than
two conjuncts, our methods significantly outperform Ficler’s, on an Open IE evaluation. We release our
implementations of CALM, sentence splitter and CALMIE(O)1 for further research.

2 Related Work

Open Information Extraction: Mausam (2016) surveys the progress in Open IE systems and its
downstream applications (e.g., (Christensen et al., 2014; Stanovsky et al., 2015)). Existing Open IE
systems are based on manually written patterns (Etzioni et al., 2011; de Sá Mesquita et al., 2013; Angeli
et al., 2015), machine-learned patterns over bootstrapped training data (Mausam et al., 2012), sentence
restructuring and decomposition (Bast and Haussmann, 2013; Schmidek and Barbosa, 2014), tree kernels
(Xu et al., 2013) and simple inference (Bast and Haussmann, 2014). Some systems focus on specific
kinds of extractions, e.g., noun-mediated (Pal and Mausam, 2016), numerical (Saha et al., 2017) and
nested (Bhutani et al., 2016). We compare our methods to Open IE 4.2 (a combination of SRL-based IE
(Christensen et al., 2011) and Relnoun (Pal and Mausam, 2016)) and ClausIE (Corro and Gemulla, 2013)
– these outperformed others in a recent large-scale evaluation (Stanovsky and Dagan, 2016). ClausIE can
also split some conjunctive clauses, thereby obtaining a higher yield.

There hasn’t been any system with a specific focus on conjunctive sentences, which are recently found
to be a reason for significant missed recall (Saha et al., 2017). While some of the missed recall is because
of conjunctions appearing in arguments of extractions (extraction #6 in Table 1), which can be separated
by reducing the argument spans (Stanovsky et al., 2016b), there are also important parts of the sentence
which do not produce any extraction from either Open IE 4.2 or ClausIE (extraction #9, #10, #11 in

1CALMIE(O) is integrated into OpenIE 5.0, the latest software of OpenIE. It is publicly available at https://github.
com/dair-iitd/OpenIE-standalone.



Figure 1: Flow diagram of CALMIE

Table 1), thereby motivating the need to split conjunctive sentences.

Conjunct Boundary Detection: Although co-ordination disambiguation has attracted attention of re-
searchers over the years, it still remains one of the hardest problems to solve. Prior work has used two
main principles for resolving ambiguities – (1) coordinated conjuncts have similar syntactic structures
(Hogan, 2007; Shimbo and Hara, 2007; Hara et al., 2009; Hanamoto et al., 2012) and (2) replacing a full
coordinated phrase with just one conjunct produces coherent (simple) sentences (Ficler and Goldberg,
2016).

The state-of-the-art coordination analyzer is by Ficler and Goldberg (2016), which uses LSTM-based
components for operationalizing both these principles. It is a machine-learned model, which requires
explicit annotation of coordination phrases for training (which isn’t available in original Penn TreeBank).
Importantly, it only outputs spans for the two conjuncts on either side of the conjunctive word and ignores
any other conjuncts coordinated by the same word. Sentences often have a long list of comma separated
conjuncts and not separating all of them would mean a substantial performance loss for end-tasks like
Open IE.

In contrast, our approach eschews the first principle, as we find that it is not true often enough to be
helpful. Our ranking of conjunct spans is based on the second principle (coherence of simple sentences).
However, the search space is additionally restricted by various linguistic constraints for both single and
nested coordination cases. Our system operates on top of Clear dependency parses (as opposed to con-
stituency parses for Ficler’s) and does not need any task-specific training data.
Sentence Simplification: CALM-based sentence splitting can be seen as a form of sentence simplifica-
tion. Existing works on sentence simplification (Zhu et al., 2010; Vickrey and Koller, 2008; Vanderwende
et al., 2007; Miwa et al., 2010) operate on top of syntactic parses, assuming them to be correct. CALM,
on the other hand, corrects typical errors made by the parser to output corrected conjunction spans. These
spans should naturally improve any sentence simplification task as well.

3 CALMIE

Figure 1 illustrates various steps of CALMIE. First, CALM identifies specific conjuncts to split the sen-
tence into multiple simple sentences. Then an Open IE system acts on simple sentences to generate
extractions. In this section we first focus on our key technical contribution, the coordination analyzer
named CALM and conclude with a discussion on the generation of simple sentences.

3.1 CALM

CALM’s goal is to output all conjunct lists from a sentence. For e.g., for sentence of Table 1, it
should likely output five lists: (1) 〈‘an American investor’,‘co-founder of Microsoft’〉, (2) 〈‘stepped
down...2000’, ‘remained as...Craig Mundie’〉, (3) 〈‘remained as chairman’, ‘created...Mundie’〉, (4)
〈‘created...himself’, ‘transferred his...Mundie’〉, (5) 〈‘Ray Ozzie’,‘Craig Mundie’〉.2

2The conjunct lists #2, #3, #4 can change depending on the nesting level of the corresponding conjunctions.



Figure 2: Clear and Stanford parses of a sample sentence

1. Generate the dependency parse of the sentence.

2. Find one of the conjunct heads through ‘cc’ edge.

3. Find all other conjunct heads through ‘conj’ edges.

4. Expand the conjunct heads to generate the conjuncts.

Table 3: Algorithm for Parser Baseline

We describe CALM’s algorithm in two subsections. First, we describe CALM for a sentence that has
only one coordinating conjunction (e.g., sentence of Figure 1). The case of multiple conjunctions, which
may be nested (as in Table 1), is discussed in the latter subsection.

3.1.1 Single Coordinating Conjunction
We create a rule-based baseline to convert a dependency parse into a conjunct list (pseudo-code in Table
3). It finds various conjunct heads via cc and conj edges and expands the heads to generate conjunct
spans. In the last step of the algorithm, while expanding on the conjunct heads, we don’t expand on
commas, the corresponding conjunction (‘and’, ‘but’, etc) or any of the other conjunct heads.

We implement the baseline over Stanford3 and Clear4 parsers. Figure 2 shows that these depen-
dency parsers have slightly different styles of notating conjuncts – Clear connects conjunct heads serially,
whereas in Stanford parses one central conjunct heads connects to all others. Preliminary experiments
reveal that Stanford parser makes many more mistakes than Clear. So we choose Clear parser for further
algorithm design.
Analysis of Clear Parser-based Baseline Algorithm: Clear Parser identifies the conjunct heads cor-
rectly in most cases, but often makes mistakes in conjunct spans. We analyze a sample of 100 conjunctive
sentences from BNC5. We find that 32 of them have correct parses with correctly identified conjuncts.
Most correctly identified conjuncts are noun phrases (NP) while most incorrect ones involve verb phrases
(VP). For e.g., in the sentence “It also helps draw out toxins and excess oils.”, the NP conjuncts ‘toxins’
and ‘excess oils’ are identified correctly.

Our analysis also reveals that almost all wrong conjunct boundaries happen at the first and the last
conjunct in the list, where the start of the first conjunct or the end of the last conjunct are identified
incorrectly. Of the 68 incorrect parses, 57 of them have the first and last conjunct longer than necessary,
suggesting that we can focus on shortening the first and last conjuncts. Further, out of these 57 sentences,
23 have a common NP subject distributed over multiple VPs and are wrongly represented in the parse.
For e.g., in the sentence “Angels danced in the air and settled reverently into their alcoves.”, the NP
‘Angels’ incorrectly comes in the subtree of the VP ‘danced in the air’, leading to the generation of two
conjuncts - ‘Angels danced in the air’ and ‘settled reverently into their alcoves’. Most of the remaining
34 sentences also contain a phrase that is distributed over two VPs, but appears in the subtree of only
one. For e.g., in the sentence “He rejoices at the fact that they started off with smalltown views , and
began thinking globally.”, the phrase “that they” appear in the subtree of “started”. Note that the con-
juncts again are VPs. Finally, incorrect conjunct boundaries almost always result in the generation of
ungrammatical simple sentences.

We design CALM on the basis of these observations – it shortens the first and last conjunct spans in a
way that the resulting simple sentences are coherent, as evaluated by a language model.
Language-Model Based Algorithm: CALM needs to find the best start of the first conjunct and best end

3nlp.stanford.edu/software/stanford-dependencies.shtml
4https://github.com/clir/clearnlp
5http://nclt.computing.dcu.ie/˜jfoster/resources/bnc1000.html



Example 1 Example 2

Sentence She gasped as he reached out and clasped her
shoulders.

Still dazed, the man eventually got himself home
and called police.

Parser Baseline
(Clear Parser)

1. She gasped as he reached out.
2. She gasped clasped her shoulders.

1. Still dazed, the man eventually got himself home.
2. called police.

+ Language Model 1. She gasped as he reached out.
2. She gasped as he clasped her shoulders.

1. Still dazed, the man eventually got himself home.
2. called police.

+ Constraints 1. She gasped as he reached out.
2. She gasped as he clasped her shoulders.

1. Still dazed, the man eventually got himself home.
2. Still dazed, the man eventually called police.

Table 4: Comparison of sentences generated using different algorithms on two conjunctive sentences.

of the last conjunct. It first generates candidates by successively shortening conjuncts from the respective
ends, until a conjunct is shortened to a single word. For e.g., for the first conjunct in “Angels..reverently”
sentence, the candidates are ‘Angels danced in the air’, ‘danced in the air’, ‘in the air’, ‘the air’ and ‘air’.

For each candidate, it constructs simple sentences by replacing the complete coordination structure
with each of its conjuncts. It scores the coherence of each simple sentence via LMScore, a language
model based score, described below. It picks the best span based on maximizing the total LMScore (over
all simple sentences).

To score the coherence of a simple sentence, we could simply use its language model probability –
product of probabilities of each word given the entire sentence so far. Most language models approximate
this via an n-gram probability for a fixed context window of length n − 1, instead of taking the entire
sentence so far.

However, using the language model score is ineffective for two reasons. First, we are comparing
simple sentences of varying lengths, and language model scores will usually score shorter sentences
higher (product of fewer probabilities). A possible correction is to take the |s|th root of the language
model score, with |s| being the sentence length. But, this isn’t enough for a second, subtle reason.

Consider the incorrect span ‘the air’ for the first conjunct, which results in the simple sentence “Angels
danced in settled reverently into their alcoves”. Notice that the n-gram probability scores will typically
assign high probabilities for the parts: ‘Angels danced in’ and ‘settled reverently into their alcoves’, since
they are bona fide parts of the original sentence. Only the part around the boundary (‘...in settled...’)
would hurt the grammaticality. However, taking the product over the whole simple sentence has the
tendency that the probabilities around the intersection could get overpowered by high scores from the
initial and ending parts of the sentence, yielding an overall high score for an ungrammatical sentence.

To correct for this, CALM only multiplies probabilities starting from the intersection point and upto
n−1 words (and takes n−1th root). All omitted probabilities are simply the product of original sentence
fragments and thus are unhelpful in disambiguating the boundary. E.g., for n = 4 our method LMScore
computes the following product:
LMScore(“Angels danced in settled...alcoves.”)
= [ P(‘settled’ | ‘Angels danced in’)
× P(‘reverently’ | ‘dance in settled’)
× P(‘into’ | ‘in settled reverently’)]1/3

In case k (k < n−1) probabilities are multiplied (for e.g., if a conjunct is too short), then CALM takes
kth root of the product.

Use of Linguistic Constraints: Although LMScore corrects many of the wrongly identified conjuncts,
we observe some limitations too. In sentences with proper nouns, the n-gram probabilities are low and
significantly decrease the overall score of the sentence. Sentences with multi-word named entities also
should not be split. For e.g., in the sentence “Donald Trump gave a speech and flew back to U.S..”, the
simple sentence “Donald flew back to U.S..” is grammatical yet undesirable – named entity ‘Donald
Trump’ should not be split. We further see some obvious grammatical errors in the generated sentences,
with two linguistically incoherent adjacent verbs or a preposition ‘to’ preceding a past tense verb in the
generated sentences.

To correct such errors, CALM picks the candidate that has the highest LMScore without violating any
of the following linguistic constraints:



Figure 3: Hierarchical conjunct tree representation of a sentence with multiple conjunctions

1. Each simple sentence must have a subject. CALM looks for nsubj and nsubjpass dependency labels
in the parse tree.

2. Named Entities (as identified by Stanford NER system6) should not be split.
3. If two verbs are adjacent, the first must be a light verb7. It handles ungrammatical sentences contain-

ing two adjacent incoherent verbs. For e.g., “lives listening (to music)” is nonsensical, but “likes
listening (to music)” is not since ‘like’ is a light verb.

4. A simple sentence should not have two consecutive occurrences of the same word.
5. Verb categories VBD, VBZ and VBP must precede a set of predefined POS tags8. English rarely

allows a preposition, determiner or other such POS tags before the past/participle forms of a verb.
However, language models do not always devalue these sentences. This constraint helps eliminate
candidates that lead to such simple sentences.

3.1.2 Multiple Coordinating Conjunctions
When a sentence has multiple coordinating conjunctions, CALM identifies all coordination structures,
i.e., the conjunct lists associated with each conjunction. Following English grammar, two coordination
structures may have nothing in common (disjoint) or one conjunct list may be contained within the span
of one of the conjuncts of another list (nested). For example, in sentence of Figure 3, the conjunct lists
marked in yellow ({‘electrical engineer’, ‘technology and retail entrepreneur’}) and green ({‘books’,
‘aerospace’, ‘newspapers’ }) are disjoint, while the one marked in blue ({‘technology’, ‘retail’}) is
nested within the second conjunct of yellow conjunct list.

Partial intersections, where one conjunct list is only partially contained in a conjunct of another list,
are ungrammatical. CALM uses this knowledge as a search space constraint to jointly disambiguate all
coordination structures in a sentence. We name this the multiple conjunction constraint. To operational-
ize this, we define a novel representation, hierarchical coordination tree (HCTree), for expressing the
compositional containment between coordination structures.

An HCTree is a tree with each node representing a conjunct list for a single coordination structure,
stored as a sequence of interval offsets. An edge from node A to B represents that B is fully contained
within one of the conjuncts of A (nested case). Figure 3 illustrates an HCTree: ‘electrical engineer’ is
stored as interval 6-7, as it comprises sixth and seventh tokens in the sentence.

The number of legal HCTrees for a multiple conjunction sentence could be huge and a complete
search over all tree structures and spans will be prohibitive. However, we reduce the search space by not
performing a full search, as Clear parser usually returns a structurally accurate analysis, but, as before,
makes errors in exact boundaries.

Use of Multiple Conjunction Constraint: CALM constructs an initial HCTree by converting the Clear
parse into conjunct lists (using parser baseline), adding a node per conjunct list, and adding edges as per

6https://nlp.stanford.edu/software/CRF-NER.shtml
7We use the list of light verbs released by (Jain and Mausam, 2016) at https://github.com/dair-iitd/kglr.
8CC, CD, EX, NN, NNS, NNP, NNPS, PDT, PRP, RB, RBR, RBS, WDT, WP



containments in the parse. This provides us with a good structure for enforcing the multiple conjunction
constraint. CALM keeps the HCTree structure constant, and re-evaluates the exact conjunct boundaries
for each node in the tree.

In addition to providing a structure over all conjunct lists, an HCTree also imposes a natural order in
which we could correct span errors. Typically, smaller conjuncts are easier to correct than longer ones.
So, CALM makes a bottom up pass greedily correcting spans for the conjunct list in each node. As in
previous subsection, a conjunct is only shortened. Moreover only start of first conjunct and end of last
conjunct in a list are re-evaluated using the single-conjunction version of CALM.

Notice that shortening of a child conjunct doesn’t hurt the consistency of an HCTree, since if a conjunct
list was contained in a parent conjunct, then the shortened conjunct list is also contained in the same
parent conjunct. However, the boundaries of child conjunct list impose an additional constraint on the
candidate spans of the parent conjunct list – while shortening the parent conjunct, all child conjuncts
must continue to be contained in it. Thus, when applying CALM at the parent node, this additional
search constraint is imposed to maintain a valid HCTree.

3.2 Simple Sentences for Open IE

Once the spans of conjunct lists have been determined, the next task is to generate the simple sentences.
Our Open IE system, CALMIE generates them in a top-down order of the HCTree. It starts with the orig-
inal sentence. Now, at each level of the tree, it collects all the conjunct lists and generates all possible
sentences out of the sentences generated from the previous level. Since at a particular level of the tree all
conjunct lists are disjoint, generating simple sentences requires simply identifying parts of the sentence
that do not belong to any conjunct list and concatenating them in order with a conjunct for each coordi-
nation structure. Note that it avoids generation of duplicate sentences by identifying which conjunct lists
at a particular level are part of which simple sentences from the previous level and finally splitting only
those. After processing the conjunct lists at the last level of the HCTree, we get all the simple sentences.

For Open IE, we wish to only produce those simple sentences, whose truth can be inferred from the
original sentence. CALMIE doesn’t split conjuncts coordinated by ‘or’, ‘nor’, and paired conjunctions
like ‘either-or’ and ‘neither-nor’. For e.g. splitting “Adam’s nationality is French or German.” will be
inaccurate.

One common class of non-distributive coordination that cannot be split contains prepositions like
‘between’ in connecting the conjuncts. For e.g. the sentence “The world cup final was played between
Germany and Argentina.” should not be split. Other examples aggregate information across conjuncts
as in the sentence, “The average of 3 and 5 is 4.” Thus, we create a list of triggers (‘between’, ‘among’,
‘total’, ‘sum’, ‘average’,‘each other’, ...) using Thesaurus expansion of seed words which indicate non-
distributive coordination . If the arguments of Open IE extractions on the original sentence contain any
of the triggers, CALMIE does not split these conjuncts.

4 Experiments

We perform two sets of experiments. Section 4.1 evaluates CALM for coordination analysis task, and
Section 4.2 demonstrates the performance increase, when using CALMIE for Open IE.

CALM’s implementation uses the Berkeley Language Model,9 which is based on the Google n-gram
corpus. It uses Stupid Back-off smoothing (Brants et al., 2007) for infrequent n-grams. CALMIE runs
Open IE 4.2 and ClausIE over the simple sentences generated in the previous section.

4.1 Experiments on Coordination Analysis

Previous work has given credit to a system only when both boundaries of a conjunct match exactly (Ficler
and Goldberg, 2016). However, this is not ideal for downstream tasks like Open IE. Consider a sentence
with polysyndetic coordination: “Obama visited India and Japan and South Korea.”. Here, two analyses
are equally good, depending upon whether we consider first conjunction as top-level or second, leading

9https://code.google.com/archive/p/berkeleylm/



Parser Baseline
(Stanford Parser)

Parser Baseline
(Clear Parser) + Language Model + Constraints

SC MC SC+MC SC MC SC+MC SC MC SC+MC SC MC SC+MC
Precision 83.93 69.20 79.30 94.69 86.78 92.14 94.33 87.85 92.24 94.22 88.00 92.21

Recall 80.91 80.78 80.86 90.22 78.34 86.39 91.36 82.75 88.58 92.97 83.23 89.83
F-score 82.39 74.75 80.07 92.40 82.34 89.17 92.82 85.22 90.37 93.59 85.55 91.00

Table 5: Results for simple sentence evaluation on British News Corpus. CALM obtains about 2 pt F-score improvement over
Clear parser baseline. SC: Sentences with one conjunction, MC: Sentences with multiple conjunctions.

(Ficler and Goldberg, 2016) CALM
Precision 72.81 75.12

Recall 72.61 70.64
F1 72.7 72.81

Table 6: Results for conjunct boundary detection on Penn Treebank. CALM is competitive with state of the art.

to first conjunct being ‘India’ or ‘India and Japan’, respectively. Such artifacts commonly happen when
there are multiple conjunctions in a sentence, such as in Table 1.

In response, we evaluate a coordination analysis by generating the simple sentences and comparing
them against the gold set of simple sentences. We split all coordinations (whether they are distributive or
not) for this evaluation. For each conjunctive sentence, we compare its set of system-generated simple
sentences with a gold set by first finding the best one-to-one mapping between the simple sentences in
the two sets. Then for each mapping, precision is computed as the number of overlapping words upon the
number of words in the predicted sentence. Recall is the number of overlapping words upon the number
of words in the gold sentence. Notice that for the sentence above, all (correct) alternative analyses will
yield the same simple sentences, obtaining perfect precision and recall scores.

We run our first set of experiments on all conjunctive sentences from British News Corpus test set.10

It contains the gold parses for all sentences, which are used to generate the gold simple sentences. BNC
testset has 577 conjunctive sentences – 391 with one conjunction and 186 with multiple conjunctions.

Table 5 compares the performances of all our algorithms on the whole BNC testset, and also individu-
ally on single and multiple conjunction sentences. We find that due to better conjunct heads identification,
Clear parser does a much better job than Stanford parser in identifying conjunct boundaries. We get a
point of F-score improvement by using language model over Clear parser baseline. Incorporating lin-
guistic constraints yields another two-thirds of a point. More importantly, CALM obtains nearly 3.2 pt
gain for sentences with multiple conjunctions; this highlights the value of our HCTree representation.
Overall improvement of CALM over Clear baseline for the whole BNC is statistically significant using
paired t-test with p = 0.015.

For sentences with a single conjunction, there is a slight drop in the final precision as compared to
the parser baseline algorithm. Since we are only shortening the conjuncts, an already incorrect analysis
can end up having even lesser number of common words with the gold sentence, reducing the precision.
While the final precision is comparable, the recall improves significantly. This can be explained by
examples in Table 4. E.g., in the second example, parser baseline has perfect precision, but low recall,
due to missing words in the second simple sentence (“called police”). CALM corrects this by adding
words in the sentence, increasing the recall to 1.0.

Comparison with Ficler’s System: We also directly compare against Ficler’s system on their dataset
(Penn TreeBank). Recall that their evaluation metric is exact match of conjunct boundaries but only for
the two conjuncts closest to the conjunction. We use their exact metric (Table 6) and find that CALM

has slightly different characteristics – it has a higher precision and a lower recall; but, in aggregate it
produces a similar F-score. Given that CALM is not trained directly (except for underlying parsers), we
find it creditable that it can match performance of the state of the art system that was specifically trained
on this data for this task. Unfortunately, their code isn’t available for us to compare performance on
BNC.

10http://nclt.computing.dcu.ie/˜jfoster/resources/bnc1000.html



ClueWeb12 News+Wikipedia
[C] [Cm[C]] [O4] [Cm[O]] [C] [Cm[C]] [O4] [Cm[O]]

Precision 62.50 64.50 70.04 74.80 67.17 68.12 79.12 81.2
Yield 267 381 199 349 204 325 172 315

Table 7: Open IE comparison on two datasets. [C]: ClausIE, [O4]: Open IE 4.2, [Cm[O]]: CALMIE(O), [Cm[C]]:
CALMIE(C)

Two Conjuncts More than Two Conjuncts
[FG] [Cm[O]] [FG] [Cm[O]]

Precision 72.71 72.35 74.50 74.78
Yield 323 330 346 445

Table 8: Open IE comparison on Penn TreeBank. [FG]: Ficler+Open IE 4.2, [Cm[O]]: CALMIE(O).

Error Analysis: CALM sometimes misses conjunctions in sentences due to the inaccuracy of parsers
(absence of a ‘cc’ edge). A more common problem is that of missing contexts in sentences while splitting.
E.g., from the sentence “Two years ago we were carrying huge inventories and that was the big culprit
.”, CALM generates two simple sentences: “Two years ago we were carrying huge inventories.” and
“that was the big culprit.”. Although the sentences are grammatically correct, we miss the phrase “Two
years ago” in the second sentence. While this is a missing prefix problem, CALM often tends to miss
important phrases in the suffix as well. E.g., for the sentence “We want to see Nelson Mandela and all
our comrades out of the prison.”, it misses the suffix phrase “out of the prison”. We believe fixing such
problems will require better understanding of the semantics of the sentence.

4.2 Experiments on Open IE

We now evaluate the improvement in performance on the final task of Open IE using conjunctive
sentences from three different datasets. We randomly sample 100 conjunctive sentences each from
ClueWeb12 (CW)11 and Open IE benchmarking dataset (NW) of Newswire and Wikipedia sentences
(Stanovsky and Dagan, 2016). We consider a sentence conjunctive if its parse has a cc edge. Note that
we could not use the whole of NW dataset since its gold set of extractions does not split conjunctions in
arguments.

We also test on Penn Treebank (PTB) testset used for coordination evaluation in (Ficler and Gold-
berg, 2016). We report two sets of numbers from the dataset – for a random sample of 100 sentences
with two conjuncts per conjunction, and all of 95 conjunctive sentences with more than 2 conjuncts per
conjunction.

For CW and NW, we compare CALMIE(C) (CALM generated simple sentences passed through
ClausIE) and CALMIE(O) (CALM generated simple sentences passed through Open IE 4.2) against two
state-of-the-art Open IE systems, ClausIE and Open IE 4.2. These Open IE systems outperform others
in a recent large-scale evaluation. Moreover, ClausIE also splits some conjunctive clauses, making it an
especially suitable system for this comparison. As there is no automated way to check the correctness of
an extraction, two annotators with NLP experience annotate the extractions for correctness. Each anno-
tator annotated about 6000 extractions in total. We obtain an inter-annotator agreement of 97.2% across
all the datasets and report the results on the subset where both agree. Table 7 lists the precision and yield
on these test sets. Note that yield is equal to the number of correct extractions and is proportional to
recall. It is normally used in Open IE where recall denominator is hard to compute.

On CW, CALMIE(C) and CALMIE(O) obtain 1.4x and 1.8x yields compared to ClausIE and Open IE
4.2 respectively. The respective precision gains are 2 and 5 points. On NW, CALMIE(C) and CALMIE(O)
achieve 1.6x and 1.8x better yields with marginal precision gains compared to ClausIE and Open IE 4.2
respectively. All the improvements are statistically significant using paired t-test at p < 10−4. We find
that both Open IE 4.2 and ClausIE are unable to separate out extractions if the conjunctions are in the
arguments. This largely accounts for CALMIE’s massive yield improvement. Overall, we see substantial
improvement in extractions of both Open IE 4.2 and ClausIE after the application of CALM.

Finally, we split the sentences in PTB sample into simple sentences using CALM and Ficler. Both
sets of simple sentences are then fed to Open IE 4.2 for generating extractions, i.e., the pipeline after

11http://www.lemurproject.org/clueweb12.php



coordination analysis is the same. Table 8 shows that on sentences with two conjuncts per conjunction,
the two sets of extractions are comparable. However, on 95 sentences with more than two conjuncts
per conjunction, CALMIE(O) achieves 1.3x better yield than Ficler. This is due to Ficler’s inability to
separate out all the conjuncts.

Error Analysis: The single major challenge in Open IE over conjunctive sentences is in figuring out
when not to split. For example, in “Japan’s domestic sales of cars, trucks and buses in October rose by
18%.”, no obvious trigger is present that can indicate non-distributive coordination. Another common
class is organization names with ‘and’ as part of their names. For e.g., in sentence “The Perch and
Dolphin fields moved their headquarters.”, ‘Perch and Dolphin’ should not be split. Use of LEX system
could help with better NER tagging (Downey et al., 2007). Finally, non-context free constructions need
to be handled differently while splitting as in, “Germany and Argentina beat Brazil and Netherlands in
the semis respectively.” We believe that this remains one of the key future directions for improving the
precision of our system.

5 Conclusions and Discussion

Coordination disambiguity is regarded as one of the hardest problems in NLP (Ficler and Goldberg,
2016). We develop CALM, a coordination analyzer that corrects the errors of Clear parser by using
three insights: (1) splitting into coherent simple sentences, as judged by a modified language model
score, (2) linguistically inspired constraints to obtain better conjunct spans, and (3) a novel hierarchical
coordination tree data structure that enforces consistency among conjunct lists for multiple coordinations,
leading to performance gain.

We split distributive coordinations to obtain simple sentences for running downstream Open IE. Our
Open IE system, CALMIE, obtains enormously higher yields (upto 1.8 times) and comparable or better
precisions for conjunctive sentences against state of the art Open IE systems. Empirical evaluation across
multiple datasets demonstrate than CALM should likely improve any Open IE system. We also believe
that CALM has value outside of Open IE, such as for Closed IE and sentence simplification.

CALM’s insights are general, but its implementation is specific to Clear parser, which is used in Open
IE 4.2. Minor modifications may be needed when correcting coordination errors in other parsers. In the
future, we plan to use CALM to improve Clear parser itself.

A strength (and also weakness) of our work is that it is not an ML system. While we test CALM

on several domains, it is conceivable that for some domains or genres, it does not perform as well.
Embedding our ideas in the context of a learning system may obtain even better in-domain performance.
One approach is to use CALM output as (hard or soft) constraint at inference time, similar to how
CCMs use constraints while learning parameters. We also note that our main idea of splitting into simple
sentences, may not always work, e.g., in the case of ellipsis and gaping. Such sentences are infrequent
in our datasets; extending to these is another direction for the future.

We release Open IE 5.0 which integrates CALMIE(O) into the latest software of OpenIE. We also
release the annotated datasets used for evaluating CALMIE(O) and the implementations of CALM and the
sentence splitter which can be used for splitting conjunctive sentences in various downstream NLP tasks.
All of these are publicly available for further research at https://github.com/dair-iitd/
OpenIE-standalone.
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