CS 210N: Numerical and Scientific Computing

Tutorial - 4

1. Which of the following behaviors are possible in using Newton's method for solving a nonlinear equation?
(a) It may converge linearly
(b) It may converge quadratically
(c) It may not converge at all
2. What is meant by a bracket for a non-linear function in one dimension? What does this concept have to do with zero finding?
3. What is meant by a quadratic convergence rate for an iterative method?
4. What is meant by a fixed point of a function $\mathrm{g}(\mathrm{x})$?
5. Find the iterative methods based on the Newton Raphson methods for finding square root, inverse and cubic root of a real positive number N . Apply the method to $\mathrm{N}=18$ to obtain the result correct to two decimals.
6. Given the following equations:
(i) $x^{4}-x-10=0$
(ii) $\boldsymbol{x}-\boldsymbol{e}^{-\boldsymbol{x}}=0$

Determine the initial approximations. Use these to find the roots corresponding to three decimal places with the following methods:
(a) the Regula Falsi method
(b) the Secant method
(c) the Newton-Raphson method
7. Perform two iterations with Muller method for the following equations:
(i) $\boldsymbol{x}^{3}-1 / 2=0, x_{0}=0, x_{1}=1, x_{2}=1 / 2$
(ii) $\log x-x+3=0, x_{0}=1 / 4, x_{0}=1 / 2, x_{2}=1$
8. Express the Newton Iteration for solving each of the following nonlinear systems

$$
\begin{array}{ll}
\text { (a) } \boldsymbol{x}_{1}^{2}+\boldsymbol{x}_{2}^{2}=0 \\
\boldsymbol{x}_{1}^{2}-\boldsymbol{x}_{2}^{2}=0
\end{array} \quad \text { (b) } \begin{aligned}
& \boldsymbol{x}_{1}^{2}+\boldsymbol{x}_{1} \boldsymbol{x}_{2}^{3}=9 \\
& 3 \boldsymbol{x}_{1}^{2} \boldsymbol{x}_{2}-\boldsymbol{x}_{2}^{3}=4
\end{aligned}
$$

