CS 210N: Numerical and Scientific Computing

Tutorial - 2

1. Solve the following linear systems twice. First, use Gaussian elimination and give factorization $A=L U$. Second, use Gaussian elimination with scaled row pivoting and determine the factorization of the form $\mathrm{PA}=\mathrm{LU}$
(a) $\left[\begin{array}{ccc}-1 & 1 & -4 \\ 2 & 2 & 0 \\ 3 & 3 & 2\end{array}\right] \quad\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ 1 / 2\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 6 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1\end{array}\right] \quad\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$
© $\left[\begin{array}{cccc}-1 & 1 & 0 & -3 \\ 1 & 0 & 3 & 1 \\ 0 & 1 & -1 & -1 \\ 3 & 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 3 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 4 & -9 & 2 & 1 \\ 8 & 16 & 6 & 5 \\ 2 & 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}2 \\ 14 \\ -3 \\ 0\end{array}\right]$
2. Show how Gaussian elimination with scaled row pivoting works on this example (Forward phase only):

$$
\left[\begin{array}{ccc}
2 & -2 & -4 \\
1 & 1 & -1 \\
3 & 7 & 5
\end{array}\right]
$$

Display the scale array $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right)$ and find the final permutation array $\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right)$. Show the final A-array, with the multipliers stored in the correct locations.
3. This problem shows how the solution of the system of equations can be unstable relative to perturbations in the data. Solve $\mathrm{Ax}=\mathrm{b}$ with $\mathrm{b}=(100,1)^{\mathrm{T}}$, and with each of the following matrices.

$$
A_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & 0.01
\end{array}\right]
$$

4. Solve this system by Gaussian elimination with full pivoting

$$
\left[\begin{array}{ccc}
-9 & 1 & 17 \\
3 & 2 & -1 \\
6 & 8 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
9 \\
-3
\end{array}\right]
$$

5. Determine $\operatorname{det}(\mathrm{A})$, where

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

without computing the determinant by expansion by minors.
6. Given an $n x n$ nonsingular matrix \mathbf{A} and a second $n x n$ matrix \mathbf{B}, what is the best way to compute the $n x n$ matrix $\mathbf{A}^{-1} \mathbf{B}$?
7. Specify an elementary elimination matrix the zeros the last two components of the vector

$$
\left[\begin{array}{c}
3 \\
2 \\
-1 \\
4
\end{array}\right]
$$

8. True or False: The multipliers in the Gaussian algorithm with full pivoting (both row and column pivoting) lie in the interval $[-1,1]$.
9. Consider $A=\left[\begin{array}{ccc}3 & 2 & -1 \\ 6 & 6 & 2 \\ -1 & 1 & 3\end{array}\right]$. Use Gaussian elimination with scaled row pivoting to obtain the factorization $P A=L D U$, where L is a Unit lower triangular matrix, U is unit upper triangular matrix, D is a diagonal matrix, and P is a permutation matrix.
10. If \mathbf{A} is $n x n$ and \mathbf{B} is $n x m$, how many multiplications and divisions are required to solve $\mathbf{A X}=\mathbf{B}$ by Gaussian elimination with scaled row pivoting? What is $\mathbf{B}=\mathbf{I}$?
