

Introduction
Traditional Science
• Observation
Theory Europriment Most supervise
• Experiment Most expensive
• Experiment can be replaced with Computers Simulation - Third Pillar of Science
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002 2</dheerajb@cse.iitd.ac.in>

Clusters F	eatures
Different about clusters?	
Commodity parts	
Incremental Scalability	
Independent Failure	
Complete Operating System on every node	
Good Price Performance Ratio	
Dheerai Bhardwai <dheeraib@csc.iitd.ac.in> August, 2002</dheeraib@csc.iitd.ac.in>	34

Parallel Algorithms - Characteristics

45

- A parallel algorithm is a recipe that tells us how to solve a given problem using multiprocessors
- Methods for handling and reducing interactions among tasks so that the processors are all doing useful work <u>most</u> of the time is important for performance
- Parallel algorithms has the added dimensions of concurrency which is of paramount importance in parallel programming.
- The maximum number of tasks that can be executed at any time in a parallel algorithm is called <u>degree of concurrency</u>

August, 2002

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

<section-header>

 Data parallelism

 • Task parallelism

 • Combination of Data and Task parallelism

 • Stream parallelism

	p	Parallel Programming Paradig	m
	✤ Phase parallel		
	Divide and conquest	uer	
	Pipeline		
	Process farm		
	* Work pool		
	<u>Remark :</u>		
	The parallel prog steps, and each s computation pha	gram consists of number of super super step has two phases : <i>use and interaction phase</i>	
Dheeraj B	hardwaj <dheerajb@cse.iitd.ac.in></dheerajb@cse.iitd.ac.in>	August, 2002	58

Main Features	Data-Parallel	Message- Passing	Shared-Variable
Control flow (threading)	Single	Multiple	Multiple
Synchrony	Loosely synchronous	Asynchronous	Asynchronous
Address space	Single	Multiple	Multiple
Interaction	Implicit	Explicit	Explicit
Data allocation	Implicit or semiexplicit	Explicit	Implicit or semiexplicit

Explicit Parallel Programming Models

Shared Variable Model

- It has a single address space (Similar to data parallel)
- It is multithreading and asynchronous (Similar to message-passing model)
- Data resides in single shared address space, thus does not have to be explicitly allocated
- Workload can be either explicitly or implicitly allocated
- Communication is done implicitly through shared reads and writes of variables. However synchronization is explicit

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

August, 2002

75

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

76

_	T enformance requirements
<u>Re</u>	<u>marks</u>
•	Higher Utilization corresponds to higher Gflop/s p dollar, provided if CPU-hours are changed at a fixed rate
•	A low utilization always indicates a poor program compiler.
•	Good program could have a long execution time due to large workload, or a low speed due to a slow machine.
•	Utilization factor varies from 5% to 38%. Generally t utilization drops as more nodes are used.
•	Utilization values generated from the vendo benchmark programs are often highly optimized.

Performance Metrics of Parallel Systems <u>Amdahl's law implications</u> 1. For a given workload, the maximal speedup has an upper bound of 1/α. 2. In other words, the sequential component of the program is bottleneck. 3. When α increases the speedup decreases proportionally. 4. To achieve good speedup, it is important to make the sequential bottleneck α as small as possible. For fixed load speedup S_p (with all overheads T₀) becomes

$$S_{p} = \frac{W}{\alpha W + (1 - \alpha) W/p} = \frac{1}{\alpha_{0} + T_{0} / W} \text{ as } p \longrightarrow \infty$$
Dheeraj Bhardwaj August, 2002

<section-header><section-header><list-item><list-item><list-item>

44

Performance Metrics of Parallel Systems

91

Sun and Ni's law : Memory Bound Speed up (S_{p}^{*})

- Let M be the memory capacity of a single node. On an p-node parallel system, the total memory is pM. Given a memory-bounded problem, assume it uses all the memory capacity M on one node and execute in W seconds. Now the workload on one node is W is given by αW + (1- α)W
- When p nodes are used, assume that the parallel portion of the workload can be scaled up F(p) times.
- Scaled work load is W is given by αW + (1- α) F(p) W. (Here the factor G(p) reflects the increase in workload as the memory capacity increases p times).

August, 2002

$$S_p^* = \frac{\alpha W + (1 - \alpha) F(p) W}{\alpha W + (1 - \alpha) F(p) W/p} = \frac{\alpha + (1 - \alpha) F(p)}{\alpha + (1 - \alpha) F(p)/p}$$

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>

Conclusions Clusters are promising • Solve parallel processing paradox • Offer incremental growth and matches with funding pattern • New trends in hardware and software technologies are likely to make clusters more promising. Success depends on the combination of Architecture, Compiler, Choice of Right Algorithm, **Programming Language** software, Principles of Design of algorithm, Design of Portability, Maintainability, Performance analysis measures, and Efficient implementation 92 Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Final Wo	ords				
Acknowledgements Centre for Development of Advanced Computing (C-DA) 	AC)				
Computer Service Center, IIT Delhi					
Department of Computer Science & Engineering, IIT Delhi					
More Information can be found at					
http://www.cse.iitd.ac.in/~dheerajb/links.htm					
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002</dheerajb@cse.iitd.ac.in>	94				