
1

1
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallel Computing

Dheeraj Bhardwaj

Department of Computer Science & Engineering

Indian Institute of Technology, Delhi –110 016 India

http://www.cse.iitd.ac.in/~dheerajb

A Key to Performance

2
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

• Traditional Science

• Observation

• Theory

• Experiment -- Most expensive

• Experiment can be replaced with Computers

Simulation - Third Pillar of Science

Introduction

2

3
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

• If your Applications need more computing power than a

sequential computer can provide ! ! !

• You might suggest to improve the operating

speed of processors and other components.

• We do not disagree with your suggestion BUT how long

you can go ? Can you go beyond the speed of light,

thermodynamic laws and high financial costs ?

❃ Desire and prospect for greater performance

Introduction

4
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Performance

Three ways to improve the performance

• Work harder - Using faster hardware

• Work smarter - - doing things more efficiently

(algorithms and computational techniques)

• Get help - Using multiple computers to solve a

particular task.

3

5
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallel Computer

Definition :

A parallel computer is a “Collection of processing elements

that communicate and co-operate to solve large problems

fast”.

Driving Forces and Enabling Factors

� Desire and prospect for greater performance

� Users have even bigger problems and designers have even

more gates

6
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Need of more Computing Power: Grand Challenge Applications

Life Sciences

Mechanical Design & Analysis (CAD/CAM)

Aerospace

Geographic

Information

Systems

4

7
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

• Weather Forecasting

• Seismic Data Processing

• Remote Sensing, Image Processing & Geomatics

• Computational Fluid Dynamics

• Astrophysical Calculations

Need of more Computing Power: Grand Challenge Applications

8
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Grand Challenge Applications

Scientific & Engineering Applications

• Computational Chemistry

• Molecular Modelling

• Molecular Dynamics

• Bio-Molecular Structure Modelling

• Structural Mechanics

5

9
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Business/Industry Applications

• Data Warehousing for Financial Sectors

• Electronic Governance

• Medical Imaging

Internet Applications

• Web Servers

• Digital libraries

Grand Challenge Applications

10
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Requirements for Applications

Time

6

11
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Need of numerical and non-numerical algorithms

� Numerical Algorithms

• Dense Matrix Algorithms

• Solving linear system of equations

• Solving Sparse system of equations

• Fast Fourier Transformations

� Non-Numerical Algorithms

• Graph Algorithms

• Sorting algorithms

• Search algorithms for discrete Optimization

• Dynamic Programming

Application Trends

12
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Commercial Computing

� The database is much too large to fit into the computer’s

memory

� Opportunities for fairly high degrees of parallelism exist

at several stages of the operation of a data base

management system.

� Millions of databases have been used in business

management, government administration, Scientific and

Engineering data management, and many other

applications.

� This explosive growth in data and databases has

generated an urgent need for new techniques and tools.

Applications – Commercial computing

7

13
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Sources of Parallelism in Query Processing

� Parallelism within Transactions (on line transaction

processing)

� Parallelism within a single complex transactions.

� Transactions of a commercial database require

processing large complex queries.

Parallelizing Relational Databases Operations

� Parallelism comes from breaking a relational operations

(Ex : JOIN)

� Parallelism comes from the way these operations are

implemented.

Applications – Commercial computing

14
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallelism in Data Mining Algorithms

� Process of automatically finding pattern and relations in

large databases

� Data sets involved are large and rapidly growing larger

� Complexity of algorithms for clustering of large data set

� Algorithms are based on decision trees. Parallelism is

there on the growth phase due to its data intensive nature

Applications – Commercial computing

8

15
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Requirements for applications

� Exploring useful information from such data will

efficient parallel algorithms.

� Running on high performance computing systems

with powerful parallel I/O capabilities is very

much essential

� Development parallel algorithms for clustering and

classification for large data sets.

Requirements for Commercial Applications

16
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

General Purpose Parallel Computer

Shared Memory

Architecture

Interconnection Network

P P P P

Shared Memory
Interconnection Network

PPPP

M M M M

Distributed Memory

Architecture

9

17
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Serial and Parallel Computing

SERIAL COMPUTING

� Fetch/Store

� Compute

PARALLEL COMPUTING

� Fetch/Store

� Compute/communicate

� Cooperative game

18
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Serial and Parallel Algorithms - Evaluation

• Serial Algorithm

– Execution time as a function of size of input

• Parallel Algorithm

– Execution time as a function of input size, parallel architecture

and number of processors used

Parallel System

A parallel system is the combination of an algorithm and

the parallel architecture on which its implemented

10

19
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Issues in Parallel Computing

• Design of parallel computers

• Design of efficient parallel algorithms

• Parallel programming models

• Parallel computer language

• Methods for evaluating parallel algorithms

• Parallel programming tools

• Portable parallel programs

20
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Architectural models of Parallel Computers

SIMD MIMD

11

21
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

SIMD Features

� Implementing a fast, globally accessible shared

memory takes a major hardware effort

� SIMD algorithms for certain class of applications are

good choice for performance

� SIMD machines are inherently synchronous

� There is one common memory for the whole

machine

� Cost of message passing is very less

22
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

MIMD Features

� MIMD architecture is more general purpose

� MIMD needs clever use of synchronization that

comes from message passing to prevent the race

condition

� Designing efficient message passing algorithm is

hard because the data must be distributed in a way

that minimizes communication traffic

� Cost of message passing is very high

12

23
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

MIMD Classification

MIMD

Non-shared memory

Shared memory

MPP

Clusters

Uniform memory access

PVP

SMP

Non-Uniform memory access

CC-NUMA

NUMA

COMA

24
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Message Passing Architecture

MIMD message-passing computers are referred as

multicomputers

13

25
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

P/C : Microprocessor and cache; SM : Shared memory

Symmetric Multiprocessors (SMPs)

W
ri
ti
n
g
 P
a
ra
ll
e
l
S
c
ie
n
ti
fi
c
 A
p
p
li
c
a
ti
o
n
s
fo
r
 P
A
R
A
M

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� Uses commodity microprocessors with on-chip and off-
chip caches.

� Processors are connectecd to a shared memory through
a high-speed snoopy bus

� On Some SMPs, a crossbar switch is used in addition to
the bus.

� Scalable up to:

• 4-8 processors (non-back planed based)

• few tens of processors (back plane based)

Symmetric Multiprocessors (SMPs)

14

27
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� All processors see same image of all system resources

� Equal priority for all processors (except for master or

boot CPU)

� Memory coherency maintained by HW

� Multiple I/O Buses for greater Input Output

Symmetric Multiprocessors (SMPs)

W
ri
ti
n
g
 P
a
ra
ll
e
l
S
c
ie
n
ti
fi
c
 A
p
p
li
c
a
ti
o
n
s
fo
r
 P
A
R
A
M

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Processor
L1 cache

Processor
L1 cache

Processor
L1 cache

Processor
L1 cache

DIR
Controller

Memory

I/O
Bridge

I/O Bus

Symmetric Multiprocessors (SMPs)

15

W
ri
ti
n
g
 P
a
ra
ll
e
l
S
c
ie
n
ti
fi
c
 A
p
p
li
c
a
ti
o
n
s
fo
r
 P
A
R
A
M

Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Issues

� Bus based architecture :

• Inadequate beyond 8-16 processors

� Crossbar based architecture

• multistage approach considering I/Os required
in hardware

� Clock distribution and HF design issues for
backplanes

� Limitation is mainly caused by using a centralized
shared memory and a bus or cross bar interconnect
which are both difficult to scale once built.

Symmetric Multiprocessors (SMPs)

30
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� Heavily used in commercial applications

(data bases, on-line transaction systems)

� System is symmetric (every processor has

equal equal access to the shared memory,

the I/O devices, and the operating systems.

� Being symmetric, a higher degree of

parallelism can be achieved.

Symmetric Multiprocessors (SMPs)

16

31
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Overlapped design space of clusters, MPPs, SMPs, and

distributed computer systems

Better Performance for clusters

Clusters

Distributed
Computer
Systems

MPPs

SMPs

Single-System Image

Node
Complexity

32
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Clusters

A cluster is a type of parallel or distributed processing system,

which consists of a collection of interconnected stand-alone

computers cooperatively working together as a single, integrated

computing resource.

Programming Environment Web Windows Other Subsystems

(Java, C, Fortran, MPI, PVM) User Interface (Database, OLTP)

Single System Image Infrastructure

Availability Infrastructure

OS

Node

OS

Node

OS

Node

Commodity Interconnect

……… … …

Cluster Architecture

17

33
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Clusters Features

� Collection of nodes physically connected over

commodity/ proprietary network

� Network is a decisive factors for scalability issues

(especially for fine grain applications)

� Each node is usable as a separate entity

� Built in reliability and redundancy

� Cost/performance

34
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Clusters Features

Different about clusters?

� Commodity parts

� Incremental Scalability

� Independent Failure

� Complete Operating System on every node

� Good Price Performance Ratio

18

35
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cluster Challenges

� Single System Image

� Programming Environments (MPI/PVM)

� Compilers

� Process/thread migration, global PID

� Global File System

� Scalable I/O Services

� Network Services

36
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallel I/O

• Parallel File System

• Parallel read / write

• Parallel I/O architecture for storage subsystem

Conclusion: A way to achieve high I/O throughput

19

37
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

40 Sun Enterprise Ultra450 Nodes

No. of CPUs per node 4 @300MHz

File Servers 4 @ 4GB RAM

Compute Nodes 36 @ 2GB RAM

OS Solaris 2.7

Networks

• Fast Ethernet

• PARAMNet

• Myrinet

Developed by Developed by -- CentreCentre for Development of Advanced Computing, Indiafor Development of Advanced Computing, India

Parallel

Computing

Environments

• PVM

• MPI

•OpenMP

PARAM 10000 - A 100 GF Parallel Supercomputer

38
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Issues in Parallel Computing on Clusters

• Productivity

• Reliability

• Availability

• Usability

• Scalability

• Available Utilization

• Performance/cost ratio

20

39
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� Parallel I/O

� Optimized libraries

� Low latency and High bandwidth networks

� Scalability of a parallel system

Requirements for Applications

40
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� Partitioning of data

� Mapping of data onto the processors

� Reproducibility of results

� Synchronization

� Scalability and Predictability of performance

Important Issues in Parallel Programming

21

41
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� Architecture, Compiler, Choice of Right

Algorithm, Programming Language

� Design of software, Principles of Design of

algorithm, Portability, Maintainability,

Performance analysis measures, and Efficient

implementation

Success depends on the combination of

42
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Designing Parallel Algorithms

� Detect and exploit any inherent parallelism in

an existing sequential Algorithm

� Invent a new parallel algorithm

� Adopt another parallel algorithm that solves a

similar problem

22

43
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Principles of Parallel Algorithms and Design

Questions to be answered

� How to partition the data?

� Which data is going to be partitioned?

� How many types of concurrency?

� What are the key principles of designing parallel

algorithms?

� What are the overheads in the algorithm design?

� How the mapping for balancing the load is done

effectively?

44
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Principles of Parallel Algorithms and Design

Two keysteps

� Discuss methods for mapping the tasks to processors so

that the processors are efficiently utilized.

� Different decompositions and mapping may yield good

performance on different computers for a given problem.

It is therefore crucial for programmers to understand the

relationship between the underlying machine model and

the parallel program to develop efficient programs.

23

45
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallel Algorithms - Characteristics

� A parallel algorithm is a recipe that tells us how to solve a

given problem using multiprocessors

� Methods for handling and reducing interactions among

tasks so that the processors are all doing useful work most

of the time is important for performance

� Parallel algorithms has the added dimensions of

concurrency which is of paramount importance in parallel

programming.

� The maximum number of tasks that can be executed at any

time in a parallel algorithm is called ������������	�
���	��

46
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism

� Data parallelism

� Task parallelism

� Combination of Data and Task parallelism

� Stream parallelism

24

47
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Data Parallelism

• Identical operations being applied concurrently on

different data items is called data parallelism.

• It applies the SAME OPERATION in parallel on

different elements of a data set.

• It uses a simpler model and reduce the programmer’s

work.

Example

� Problem of adding 	 x 	 matrices.

� Structured grid computations in CFD.

� Genetic algorithms.

48
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Data Parallelism

• For most of the application problems, the degree of data

parallelism with the size of the problem.

• More number of processors can be used to solve large

size problems.

• f90 and HPF data parallel language

Responsibility of programmer

• Specifying the distribution of data structures

25

49
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Task Parallelism

• Many tasks are executed concurrently is called task

parallelism.

• This can be done (visualized) by a task graph. In this

graph, the node represent a task to be executed. Edges

represent the dependencies between the tasks.

• Sometimes, a task in the task graph can be executed as

long as all preceding tasks have been completed.

• Let the programmer define different types of processes.

These processes communicate and synchronize with

each other through MPI or other mechanisms.

50
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Task Parallelism

Programmer’s responsibility

• Programmer must deal explicitly with process creation,

communication and synchronization.

Task parallelism

Example

Vehicle relational database to process the following

query

(MODEL = “-------” AND YEAR = “-------”)

AND (COLOR = “Green” OR COLOR =“Black”)

26

51
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Data and Task Parallelism

Integration of Task and Data Parallelism

� Two Approaches

• Add task parallel constructs to data parallel

constructs.

• Add data parallel constructs to task parallel

construct

� Approach to Integration

• Language based approaches.

• Library based approaches.

52
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Data and Task Parallelism

Example

� Multi disciplinary optimization application for

aircraft design.

� Need for supporting task parallel constructs and

communication between data parallel modules

� Optimizer initiates and monitors the application’s

execution until the result satisfy some objective

function (such as minimal aircraft weight)

27

53
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Data and Task Parallelism

Advantages

� Generality

� Ability to increase scalability by exploiting both
forms of parallelism in a application.

� Ability to co-ordinate multidisciplinary applications.

Problems

� Differences in parallel program structure

� Address space organization

� Language implementation

54
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Stream Parallelism

� Stream parallelism refers to the simultaneous execution

of different programs on a data stream. It is also

referred to as �
���
	
	�.

� The computation is parallelized by executing a different

program at each processor and sending intermediate

results to the next processor.

� The result is a pipeline of data flow between processors.

28

55
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of Parallelism - Stream Parallelism

� Many problems exhibit a combination of data, task and

stream parallelism.

� The amount of stream parallelism available in a problem

is usually independent of the size of the problem.

� The amount of data and task parallelism in a problem

usually increases with the size of the problem.

� Combinations of task and data parallelism often allow us

to utilize the coarse granularity inherent in task

parallelism with the fine granularity in data parallelism to

effectively utilize a large number of processors.

56
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Decomposition Techniques

The process of splitting the computations in a problem

into a set of concurrent tasks is referred to as

decomposition.

� Decomposing a problem effectively is of paramount

importance in parallel computing.

� Without a good decomposition, we may not be able to

achieve a high degree of concurrency.

� Decomposing a problem must ensure good load

balance.

29

57
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Decomposition Techniques

What is meant by good decomposition?

� It should lead to high degree of concurrency

� The interaction among tasks should be title as

possible. These objectives often conflict with each

other.

� Parallel algorithm design has helped in the

formulation of certain heuristics for decomposition.

58
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallel Programming Paradigm

� Phase parallel

� Divide and conquer

� Pipeline

� Process farm

� Work pool

Remark :

The parallel program consists of number of super

steps, and each super step has two phases :

����������	
����

�	�
�	�
������	
����

30

59
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Phase Parallel Model

Synchronous Interaction

C C

. ..
C

Synchronous Interaction

C C
. . . C

� The phase-parallel model offers a

paradigm that is widely used in

parallel programming.

� The parallel program consists of a

number of supersteps, and each has

two phases.

� In a computation phase, multiple

processes each perform an

independent computation �.

� In the subsequent interaction phase,

the processes perform one or more

synchronous interaction operations,

such as a barrier or a blocking

communication.

� Then next superstep is executed.

60
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Divide and Conquer

� A parent process divides its

workload into several smaller

pieces and assigns them to a

number of child processes.

� The child processes then

compute their workload in

parallel and the results are

merged by the parent.

� The dividing and the merging

procedures are done recursively.

� This paradigm is very natural

for computations such as quick

sort. Its disadvantage is the

difficulty in achieving good load

balance.

31

61
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Pipeline

P

Q

R

Data stream � In pipeline paradigm, a

number of processes form a

virtual pipeline.

� A continuous data stream is

fed into the pipeline, and the

processes execute at different

pipeline stages simultaneously

in an overlapped fashion.

62
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Process Farm

Master

Slave Slave Slave

Data stream

� This paradigm is also known as the

master-slave paradigm.

� A master process executes the

essentially sequential part of the

parallel program and spawns a

number of slave processes to execute

the parallel workload.

� When a slave finishes its workload, it

informs the master which assigns a

new workload to the slave.

� This is a very simple paradigm, where

the coordination is done by the

master.

32

63
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Work Pool

Work

Pool

P P P

Work pool

� This paradigm is often used in a shared

variable model.

� A pool of works is realized in a global data

structure.

� A number of processes are created.

Initially, there may be just one piece of

work in the pool.

� Any free process fetches a piece of work

from the pool and executes it, producing

zero, one, or more new work pieces put

into the pool.

� The parallel program ends when the work

pool becomes empty.

� This paradigm facilitates load balancing, as

the workload is dynamically allocated to

free processes.

64
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallel Programming Models

Implicit parallelism

� If the programmer does not explicitly specify

parallelism, but let the compiler and the run-time

support system automatically exploit it.

Explicit Parallelism

� It means that parallelism is explicitly specified in the

source code by the programming using special

language constructs, complex directives, or library

cells.

33

65
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Implicit Parallel Programming Models

Implicit Parallelism: Parallelizing Compilers

� Automatic parallelization of sequential programs

• Dependency Analysis

• Data dependency

• Control dependency

Remark

� Users belief is influenced by the currently

disappointing performance of automatic tools (Implicit

parallelism) and partly by a theoretical results obtained

66
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Implicit Parallel Programming Models

Effectiveness of Parallelizing Compilers

� Question :

• Are parallelizing compilers effective in

generalizing efficient code from sequential

programs?

– Some performance studies indicate that may

not be a effective

– User direction and Run-Time Parallelization

techniques are needed

34

67
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Implicit Parallel Programming Models

Implicit Parallelism

� Bernstein’s Theorem

• It is difficult to decide whether two operations in

an imperative sequential program can be executed

in parallel

• An implication of this theorem is that there is no

automatic technique, compiler time or runtime that

can exploit all parallelism in a sequential program

68
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Implicit Parallel Programming Models

� To overcome this theoretical limitation, two solutions

have been suggested

• The first solution is to abolish the imperative style

altogether, and to use a programming language

which makes parallelism recognition easier

• The second solution is to use explicit parallelism

35

69
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

Three dominant parallel programming models are :

� Data-parallel model

� Message-passing model

� Shared-variable model

70
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

Shared-Variable

Asynchronous

Main

Features
Data-Parallel

Message-

Passing

Control flow

(threading)
Single Multiple Multiple

Synchrony Loosely synchronous Asynchronous

Address space
Single Multiple Multiple

Interaction Implicit Explicit Explicit

Data

allocation

Implicit or

semiexplicit
Explicit

Implicit or

semiexplicit

36

71
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

The data parallel model

� Applies to either SIMD or SPMD models

� The idea is to execute the same instruction

or program segment over different data sets

simultaneously on multiple computing nodes

� It has a single thread of control and massive

parallelism is exploited at data set level.

� Example: f90/HPF languages

72
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

Data parallelism

� Assumes a single address space, and data allocation is not

required

� To achieve high performance, data parallel languages

such as HPF use explicit data allocation directives

� A data parallel program is single threaded and loosely

synchronous

� No need for explicit synchronization free from all

deadlocks and livelocks

� Performance may not be good for unstructured irregular

computations

37

73
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

Message – Passing

� Message passing has the following characteristics :

– Multithreading

– Asynchronous parallelism (MPI reduce)

– Separate address spaces (Interaction by

MPI/PVM)

– Explicit interaction

– Explicit allocation by user

74
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

Message – Passing

• Programs are multithreading and asynchronous

requiring explicit synchronization

• More flexible than the data parallel model, but it

still lacks support for the work pool paradigm.

• PVM and MPI can be used

• Message passing programs exploit large-grain

parallelism

38

75
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

Shared Variable Model

� It has a single address space (Similar to data

parallel)

� It is multithreading and asynchronous (Similar to

message-passing model)

� Data resides in single shared address space, thus

does not have to be explicitly allocated

� Workload can be either explicitly or implicitly

allocated

� Communication is done implicitly through shared

reads and writes of variables. However

synchronization is explicit

76
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Explicit Parallel Programming Models

Shared variable model

� The shared-variable model assumes the existence of a

single, shared address space where all shared data

reside

� Programs are multithreading and asynchronous,

requiring explicit synchronizations

� Efficient parallel programs that are loosely synchronous

and have regular communication patterns, the shared

variable approach is not easier than the message

passing model

39

77
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Other Parallel Programming Models

� Functional programming

� Logic programming

� Computing by learning

� Object oriented programming

78
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Basic Communication Operations

� One-to-All Broadcast

� One-to-All Personalized Communication

� All-to-All Broadcast

� All-to-All personalized Communication

� Circular Shift

� Reduction

� Prefix Sum

40

79
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

One-to-all broadcast on an eight-processor tree

Basic Communication Operations

80
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Performance & Scalability

How do we measure the performance of a computer system?

� Many people believe that execution time is the only
reliable metric to measure computer performance

Approach

� Run the user’s application elapsed time and measure
wall clock time

Remarks

� This approach is some times difficult to apply and it
could permit misleading interpretations.

� Pitfalls of using execution time as performance metric.

� Execution time alone does not give the user much
clue to a true performance of the parallel machine

41

81
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Types of performance requirement

Six types of performance requirements are posed by users:

� Executive time and throughput

� Processing speed

� System throughput

� Utilization

� Cost effectiveness

� Performance / Cost ratio

Remarks : These requirements could lead to quite different

conclusions for the same application on the same

computer platform

Performance Requirements

82
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Remarks

� Higher Utilization corresponds to higher Gflop/s per

dollar, provided if CPU-hours are changed at a fixed rate.

� A low utilization always indicates a poor program or

compiler.

� Good program could have a long execution time due to a

large workload, or a low speed due to a slow machine.

� Utilization factor varies from 5% to 38%. Generally the

utilization drops as more nodes are used.

� Utilization values generated from the vendor’s

benchmark programs are often highly optimized.

Performance Requirements

42

83
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Speedup : Speedup �� is defined as the ratio of the serial

runtime of the best sequential algorithm for solving a

problem to the time taken by the parallel algorithm to solve

the same problem on � processor

The � processors used by the parallel algorithm are assumed

to be identical to the one used by the sequential algorithm

Cost : Cost of solving a problem on a parallel system is the

product of parallel runtime and the number of processors

used

� = ���
�

Performance Metrics of Parallel Systems

84
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Efficiency : Ratio of speedup to the number of processors.

Efficiency can also be expressed as the ratio of the execution

time of the fastest known sequential algorithm for solving a

problem to the cost of solving the same problem on �

processors

The cost of solving a problem on a single processor is the

execution time of the known best sequential algorithm

Cost Optimal : A parallel system is said to be cost-optimal if

the cost of solving a problem on parallel computer is

proportional to the execution time of the fastest known

sequential algorithm on a single processor.

Performance Metrics of Parallel Systems

43

85
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Three performance models based on three speedup metrics are

commonly used.

� Amdahl’s law -- Fixed problem size

� Gustafson’s law -- Fixed time speedup

� Sun-Ni’s law -- Memory Bounding speedup

Three approaches to scalability analysis are based on

• Maintaining a constant efficiency,

• A constant speed, and

• A constant utilization

Speedup metrics

Performance Metrics of Parallel Systems

86
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Amdahl’s law : Fixed Problem Size

Consider a problem with a fixed workload �. Assume that the

workload can be divided into two parts

� = αααα � + (1 - αααα) �

where αααα percent of W executed sequentially, and the remaining

1- αααα percent can be executed by ��nodes simultaneously.

Assume all overheads are ignored, a fixed load speedup is

defined by

αααα � + (1 - αααα) �/� 1 + (��- 1)αααα αααα
�� = =

� 1�
as � ∞∞∞∞

Performance Metrics of Parallel Systems

44

87
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Amdahl’s law implications

1. For a given workload, the maximal speedup has an upper

bound of 1/αααα.

2. In other words, the sequential component of the program is

bottleneck.

3. When αααα increases the speedup decreases proportionally.

4. To achieve good speedup, it is important to make the

sequential bottleneck αααα as small as possible.

For fixed load speedup ���(with all overheads �
0
) becomes

αααα � + (1- αααα) �/� +

�
0

αααα
0
+ T

0
/ �

�� = =
� �

as � ∞∞∞∞

Performance Metrics of Parallel Systems

88
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Gustafson’s Law : Scaling for Higher Accuracy

� The problem size (workload) is fixed and cannot scale to

match the available computing power as the machine size

increases. Thus, Amdahl’s law leads to a diminishing return

when a larger system is employed to solve a small problem.

� The sequential bottleneck in Amdahl’s law can be alleviated

by removing the restriction of a fixed problem size.

� Gustafson’s proposed ��fixed time concept that achieves an

improved speedup by scaling problem size with the increase

in machine size.

Performance Metrics of Parallel Systems

45

89
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

The fixed-time speedup with scaled workload is defined as

Sequential time for scaled-up workload αααα� + (1- αααα)��
�

Parallel time for scaled-up workload �

S�* = αααα + (1- αααα) �
� It states that the fixed time speedup is a linear function of �, if

the workload is scaled up to maintain a fixed execution time.

� Achieves an improved speedup by scaling the problem size with

the increase in machine size.

Gustafson’s Law : Scaling for Higher Accuracy

Sp * = =

Performance Metrics of Parallel Systems

90
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� The idea is to solve the largest possible problem, limited only

by the available memory capacity.

� This also demands a scaled workload, providing higher

speedup, greater accuracy, and better resource utilization

� Use concept of Amdahl’s law and Gustafson’s law to

maximize the use of both CPU and memory capacities

Sun and Ni’s law : Memory Bound Speed up

Motivation

Performance Metrics of Parallel Systems

46

91
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� Let � be the memory capacity of a single node. On an �-node

parallel system, the total memory is ��. Given a memory-

bounded problem, assume it uses all the memory capacity �

on one node and execute in � seconds. Now the workload on

one node is � is given by αααα� + (1- αααα)�

� When p nodes are used, assume that the parallel portion of

the workload can be scaled up F(p) times.

� Scaled work load is W is given by ααααW + (1- αααα) F(p) W. (Here

the factor G(p) reflects the increase in workload as the

memory capacity increases p times).

Sun and Ni’s law : Memory Bound Speed up (Sp*)

Performance Metrics of Parallel Systems

��* = αααα� + (1- αααα) �(�) �������������αααα + (1- αααα) �(�)

αααα� + (1- αααα) �(�)�/�������������αααα + (1- αααα) �(�)/�

92
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Conclusions

Success depends on the combination of

� Architecture, Compiler, Choice of Right Algorithm,

Programming Language

� Design of software, Principles of Design of algorithm,

Portability, Maintainability, Performance analysis measures, and

Efficient implementation

Clusters are promising

� Solve parallel processing paradox

� Offer incremental growth and matches with funding pattern

� New trends in hardware and software technologies are likely

to make clusters more promising.

47

93
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

References

• Albert Y.H. Zomaya, Parallel and distributed Computing Handbook,

McGraw-Hill Series on Computing Engineering, New York (1996).

• Ernst L. Leiss, Parallel and Vector Computing A practical Introduction,

McGraw-Hill Series on Computer Engineering, New York (1995).

• Ian T. Foster, Designing and Building Parallel Programs, Concepts and

tools for Parallel Software Engineering, Addison-Wesley Publishing

Company (1995).

• Kai Hwang, Zhiwei Xu, Scalable Parallel Computing (Technology

Architecture Programming) McGraw Hill New York (1997)

• Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis,

Introduction to Parallel Computing, Design and Analysis of Algorithms,

Redwood City, CA, Benjmann/Cummings (1994).

94
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Final Words

Acknowledgements

• Centre for Development of Advanced Computing (C-DAC)

• Computer Service Center, IIT Delhi

• Department of Computer Science & Engineering, IIT

Delhi

More Information can be found at

http://www.cse.iitd.ac.in/~dheerajb/links.htm

