
1

11

Programming ParadigmsProgramming Paradigms

ØØ Imperative Programming Imperative Programming –– Fortran, C, PascalFortran, C, Pascal

ØØ Functional Programming Functional Programming –– LispLisp

ØØ Object Oriented Programming Object Oriented Programming –– SimulaSimula, C++, , C++,
SmalltalkSmalltalk

ØØ Logic Programming Logic Programming -- PrologProlog

22

Parallel ProgrammingParallel Programming

A misconception occurs that parallel programs are A misconception occurs that parallel programs are
difficult to write as compared to sequential difficult to write as compared to sequential
programmes. Consider the situations:programmes. Consider the situations:

üü Write a sequential Write a sequential programmeprogramme and its multiple copies and its multiple copies
on a parallel computer. Parallelism remains on a parallel computer. Parallelism remains
transparent to the user.transparent to the user.

üü Write an Oracle application. Oracle is implicitly Write an Oracle application. Oracle is implicitly
parallel. Run it on a parallel machine. Similarly parallel. Run it on a parallel machine. Similarly
parallel C and FORTRAN90.parallel C and FORTRAN90.

2

33

Parallel ProgrammingParallel Programming

A parallel computer should be flexible and easy A parallel computer should be flexible and easy
to use. This will depend upon its architecture to use. This will depend upon its architecture
and the way we write a parallel program on it.and the way we write a parallel program on it.

Let us consider various Parallel Programming Let us consider various Parallel Programming
paradigms:paradigms:

44

Parallel Programming ParadigmParallel Programming Paradigm
vv Phase parallelPhase parallel

vv Divide and conquerDivide and conquer

vv PipelinePipeline

vv Process farmProcess farm

vv Work poolWork pool

vv Remark :Remark :

The parallel program consists of number of super The parallel program consists of number of super
steps, and each super step has two phases : steps, and each super step has two phases :
computation phase and interaction phasecomputation phase and interaction phase

3

55

Phase Parallel ModelPhase Parallel Model

Synchronous Interaction

C C
. ..

C

Synchronous Interaction

C C . . . C

l The phase-parallel model offers a
paradigm that is widely used in
parallel programming.

l The parallel program consists of a
number of supersteps, and each has
two phases.

l In a computation phase, multiple
processes each perform an
independent computation C.

l In the subsequent interaction phase,
the processes perform one or more
synchronous interaction operations,
such as a barrier or a blocking
communication.

l Then next superstep is executed.

66

Phase Parallel ModelPhase Parallel Model

This paradigm is also known as Loosely This paradigm is also known as Loosely
Synchronous Paradigm or the Agenda Synchronous Paradigm or the Agenda
Paradigm.Paradigm.

4

77

Phase Parallel ModelPhase Parallel Model
ShortcomingsShortcomings

ØØ Interaction is not overlapped with computationInteraction is not overlapped with computation

ØØ It is difficult to maintain balanced workload It is difficult to maintain balanced workload
amongst processors.amongst processors.

88

Phase Parallel ModelPhase Parallel Model

A special case of PhaseA special case of Phase--Parallel Paradigm is Parallel Paradigm is
Synchronous Iteration Paradigm where the Synchronous Iteration Paradigm where the
superstepssupersteps are a sequence of iterations in a are a sequence of iterations in a
loop.loop.

Consider the example of computing x=f(x) Consider the example of computing x=f(x)
where x is an nwhere x is an n--dimensional vector.dimensional vector.

5

99

Synchronous Iteration ParadigmSynchronous Iteration Paradigm

parforparfor (i=0; i<n; i++) //create n processes(i=0; i<n; i++) //create n processes
//each executing a for loop//each executing a for loop

{{
for (j=0; j<N; j++)for (j=0; j<N; j++)
{{

x[i] = x[i] = ffii(x);(x);
barrier;barrier;

}}
}}

1010

Synchronous Iteration ParadigmSynchronous Iteration Paradigm

For n = 9 we haveFor n = 9 we have

x0=f0(x)

Barrier Synchronisation

x1=f1(x) x9=f9(x)

Iterate
N times

6

1111

Asynchronous Iteration ParadigmAsynchronous Iteration Paradigm

parforparfor (i=0; i<n; i++)(i=0; i<n; i++)

{{

for (j=0; j<N; j++)for (j=0; j<N; j++)

x[i] = x[i] = ffii(x);(x);

}}

It allows a process to proceed to the next iteration, It allows a process to proceed to the next iteration,
without waiting for the remaining processes to catch without waiting for the remaining processes to catch
up.up.

1212

Asynchronous Iteration ParadigmAsynchronous Iteration Paradigm

The above code could be indeterminate, because The above code could be indeterminate, because
when a process is computing x[i] in the when a process is computing x[i] in the jthjth
iteration, the x[iiteration, the x[i--1] value used could be 1] value used could be
computed by another process in iteration jcomputed by another process in iteration j--1.1.

However, under certain conditions, an However, under certain conditions, an
asynchronous iteration algorithm will converge asynchronous iteration algorithm will converge
to the correct results and is faster than the to the correct results and is faster than the
synchronous iteration algorithm.synchronous iteration algorithm.

7

1313

Divide and ConquerDivide and Conquer
l A parent process divides its

workload into several smaller
pieces and assigns them to a
number of child processes.

l The child processes then
compute their workload in
parallel and the results are
merged by the parent.

l The dividing and the merging
procedures are done recursively.

l This paradigm is very natural
for computations such as quick
sort. Its disadvantage is the
difficulty in achieving good load
balance.

1414

PipelinePipeline

P

Q

R

Data stream l In pipeline paradigm, a
number of processes form a
virtual pipeline.

l A continuous data stream is
fed into the pipeline, and the
processes execute at different
pipeline stages simultaneously
in an overlapped fashion.

8

1515

Process FarmProcess Farm

Master

Slave Slave Slave

Data stream

l This paradigm is also known as the
master-slave paradigm.

l A master process executes the
essentially sequential part of the
parallel program and spawns a
number of slave processes to execute
the parallel workload.

l When a slave finishes its workload, it
informs the master which assigns a
new workload to the slave.

l This is a very simple paradigm, where
the coordination is done by the
master.

1616

Process FarmProcess Farm
DisadvantageDisadvantage

The master can become a bottleneck.The master can become a bottleneck.

9

1717

Work PoolWork Pool

Work
Pool

P P P

Work pool

l This paradigm is often used in a shared
variable model.

l A pool of works is realized in a global data
structure.

l A number of processes are created.
Initially, there may be just one piece of
work in the pool.

l Any free process fetches a piece of work
from the pool and executes it, producing
zero, one, or more new work pieces put
into the pool.

l The parallel program ends when the work
pool becomes empty.

l This paradigm facilitates load balancing, as
the workload is dynamically allocated to
free processes.

1818

Work PoolWork Pool

Implementing the work pool to allow efficient Implementing the work pool to allow efficient
accesses by multiple processes is not easy accesses by multiple processes is not easy
especially in a message passing model. The especially in a message passing model. The
work pool may be an unordered set, a queue or work pool may be an unordered set, a queue or
a priority queue.a priority queue.

10

1919

Programmability IssuesProgrammability Issues

We define programmability as a combination ofWe define programmability as a combination of

üü StructurednessStructuredness

üü GeneralityGenerality

üü PortabilityPortability

2020

Parallel Programming ModelsParallel Programming Models
Implicit parallelismImplicit parallelism

ll If the programmer does not explicitly specify If the programmer does not explicitly specify
parallelism, but let the compiler and the runparallelism, but let the compiler and the run--time time
support system automatically exploit it.support system automatically exploit it.

Explicit ParallelismExplicit Parallelism

ll It means that parallelism is explicitly specified in It means that parallelism is explicitly specified in
the source code by the programming using special the source code by the programming using special
language constructs, complex directives, or library language constructs, complex directives, or library
cells.cells.

11

2121

Implicit Parallel Programming ModelsImplicit Parallel Programming Models
Implicit ParallelismImplicit Parallelism: Parallelizing Compilers: Parallelizing Compilers

vv Automatic parallelization of sequential programs Automatic parallelization of sequential programs

•• Dependency AnalysisDependency Analysis

•• Data dependency Data dependency

•• Control dependencyControl dependency

RemarkRemark
Users belief is influenced by the currently Users belief is influenced by the currently
disappointing performance of automatic tools disappointing performance of automatic tools
(Implicit parallelism) and partly by a theoretical (Implicit parallelism) and partly by a theoretical
results obtainedresults obtained

2222

Implicit Parallel Implicit Parallel
Programming ModelsProgramming Models

Effectiveness of Parallelizing Compilers

v Question :

• Are parallelizing compilers effective in
generalizing efficient code from sequential
programs?

– Some performance studies indicate that may
not be a effective

– User direction and Run-Time Parallelization
techniques are needed

12

2323

Implicit Parallel Programming ModelsImplicit Parallel Programming Models
Implicit Parallelism Implicit Parallelism

vv Bernstein’s TheoremBernstein’s Theorem

•• It is difficult to decide whether two operations It is difficult to decide whether two operations
in an imperative sequential program can be in an imperative sequential program can be
executed in parallelexecuted in parallel

•• An implication of this theorem is that there is no An implication of this theorem is that there is no
automatic technique, compiler time or runtime automatic technique, compiler time or runtime
that can exploit all parallelism in a sequential that can exploit all parallelism in a sequential
programprogram

2424

Implicit Parallel Programming ModelsImplicit Parallel Programming Models

To overcome this theoretical limitation, two solutions To overcome this theoretical limitation, two solutions
have been suggestedhave been suggested

•• The first solution is to abolish the imperative The first solution is to abolish the imperative
style altogether, and to use a programming style altogether, and to use a programming
language which makes parallelism recognition language which makes parallelism recognition
easiereasier

•• The second solution is to use explicit The second solution is to use explicit
parallelismparallelism

13

2525

Explicit Parallel Programming ModelsExplicit Parallel Programming Models

Three dominant parallel programming Three dominant parallel programming
models are :models are :

vv DataData--parallel modelparallel model

vv MessageMessage--passing model passing model

vv SharedShared--variable modelvariable model

2626

Explicit Parallel Programming ModelsExplicit Parallel Programming Models

Shared-Variable

Asynchronous

Main
Features

Data-Parallel
Message-
Passing

Control flow
(threading) Single Multiple Multiple

Synchrony Loosely synchronous Asynchronous

Address space Single Multiple Multiple

Interaction Implicit Explicit Explicit

Data
allocation

Implicit or
semiexplicit

Explicit Implicit or
semiexplicit

14

2727

Explicit Parallel Programming ModelsExplicit Parallel Programming Models

Message Message –– PassingPassing

vv Message passing has the following characteristics :Message passing has the following characteristics :

ØØMultithreadingMultithreading

ØØAsynchronous parallelism (MPI reduce)Asynchronous parallelism (MPI reduce)

ØØSeparate address spaces (Interaction by Separate address spaces (Interaction by
MPI/PVM)MPI/PVM)

ØØExplicit interaction Explicit interaction

ØØExplicit allocation by userExplicit allocation by user

2828

Explicit Parallel Explicit Parallel
Programming ModelsProgramming Models

Message – Passing

• Programs are multithreading and asynchronous
requiring explicit synchronization

• More flexible than the data parallel model, but it
still lacks support for the work pool paradigm.

• PVM and MPI can be used

• Message passing programs exploit large-grain
parallelism

15

2929

Explicit Parallel Programming ModelsExplicit Parallel Programming Models
Shared Variable Model Shared Variable Model

ll It has a single address space (Similar to data parallel)It has a single address space (Similar to data parallel)

ll It is multithreading and asynchronous (Similar to It is multithreading and asynchronous (Similar to
messagemessage--passing model)passing model)

ll Data resides in single shared address space, thus does Data resides in single shared address space, thus does
not have to be explicitly allocatednot have to be explicitly allocated

ll Workload can be either explicitly or implicitly Workload can be either explicitly or implicitly
allocatedallocated

ll Communication is done implicitly through shared Communication is done implicitly through shared
reads and writes of variables. However reads and writes of variables. However
synchronization is explicitsynchronization is explicit

3030

Explicit Parallel Programming ModelsExplicit Parallel Programming Models

Shared variable modelShared variable model

ll The sharedThe shared--variable model assumes the existence of a variable model assumes the existence of a
single, shared address space where all shared data residesingle, shared address space where all shared data reside

ll Programs are multithreading and asynchronous, requiring Programs are multithreading and asynchronous, requiring
explicit synchronizationsexplicit synchronizations

ll Efficient parallel programs that are loosely synchronous Efficient parallel programs that are loosely synchronous
and have regular communication patterns, the shared and have regular communication patterns, the shared
variable approach is not easier than the message passing variable approach is not easier than the message passing
modelmodel

16

3131

Other Parallel Programming ModelsOther Parallel Programming Models

ll Functional programmingFunctional programming

ll Logic programming Logic programming

ll Computing by learning Computing by learning

ll Object oriented programmingObject oriented programming

