Pregramming|Paradigms

> Imperative Programming — Fortran, C, Pascal
> Functienal Programming — Lisp

> Object Oriented Programming— Simula, C++,
Smalltalk

> Logic Programming - Prolog

Parallel Pregramming

A misconception occurs that parallel programs are
difficult towrite as comparedto sequential
programmes. Consider the situations:

v Write a sequential programme and its multiple copies
on a parallel computer. Parallelism remans
transparent to-the user.

v Write an Oracle application. Oracle isimplicitly
parallel. Run it on a parallel machine. Similarly
parallel C and FORTRANS0.

Parallel Pregramming

A parallel computer should be flexible and easy.
to'use. Thiswill depend uponiits architecture
and the way we write a parallel program oniit.

L et us consider various Parallel Pregramming
paradigms:

Parallel Pregramming|Paradigm
» Phase paralléel

» Divide and conguer
+ Pipeline

2 Process farm

+» Work pool

» Remark :

The parallel program consists of numlber of super
steps, and each super step has two phases :
computation phase and interaction phase

Phase Paralle IV odéel

Synchronous Interaction

The phase-parallel model offers a
paradigm that is widely used in
parallel programming.

The parallel program consists of a
number of supersteps, and each has
two phases.

In a computation phase, multiple
processes each perform an
independent computation C.

In the subsequent interaction phase,
the processes perform one or more
synchronous interaction operations,
such as a barrier or a blocking
communication.

Then next superstep is executed.

Phase Parallel IV edel

Thisparadigm i's also knownias Leosely
Synchroneus Paradigm or the Agenda

Paradigm.

Phase Parallel Mode
Shortcomings

> Interaction is not overlapped with computation

> |t isdifficult to mantain balanced workload
amongst processors.

Phase Parallel Miodel

A special case of Phase-Parallel Paradigmiis
Synchroneus | teration Paradigm wherethe
Supersteps are a seguence. of iterationsin a
loop.

Consider the example of computing x=f(x)
where x is an n-dimensional vector.

Synenrenous | teration Paradigm

parfor (1=0; i<nm; I++) //create n processes
//eachiexecuting afor |loop
{
for (j=0; J<N; j++)
{
x[i] = f;(x);
barrier;
}
}

Synehrenous | teratien; Paradigm

For ni= 9 we have

Asynenroneus | teration Paradigm

parfor (1I=0; I<n; i++)
{
for (j=0; j<N; j++)
X[1] = £(x);
¥

It alows a process to proceed to the next iteration,
without waiting for the remaining processesito catch

up.

Asynenroneus|teration Paradigm

The above code could be indeterminate, because
when a process is computing x[i] in the jth
iteration, the x[i-1] value used could be
computed by another process iniiterationj-1.

However, under-certain conditions, an
asynchronous iteration algorithm will converge
to the correct results and is faster than the
synchronous iteration algorithm.

Divide and Cenguer

A parent process divides its
workload into several smaller
pieces and assigns them to a
number of child processes.

The child processes then
compute their. workload in
‘/C) parallel and the results are

merged by the parent.

The dividing and the merging
procedures are done recursively.

This paradigm is very natural
for computations such as quick
sort. Its disadvantage is the
difficulty in achieving good load
balance.

Pipeline

Data stream In pipeline paradigm, a
number of processes form a

virtual pipeline.

A continuous data stream is
fed into the pipeline, and the
processes execute at different
pipeline stages simultaneously
in an overlapped fashion.

Process Farm

This paradigm is also known as the
master-slave paradigm.

Data stream A master process executes the
essentially sequential part of the
parallel program and spawns a
number of slave processes to execute

the parallel workload.

When a slave finishes its workload, it
informs the master which assigns a
new workload to the slave.

This is a very simple paradigm, where
the coordination is done by the
master.

Process Farm
[Disadvantage

The master can become a bottleneck.

\Work Pool

This paradigm is often used in a shared
variable model.

A pool of works is realized in a global data

Work pool
structure.

A number of processes are created.
Work Initially, there may be just one piece of
Pool work in the pool.

Any free process fetches a piece of work
from the pool and executes it, producing
zero, one, or more new work pieces put

ﬂ ﬂ ﬂ into the pool.
L]

The parallel program ends when the work
pool becomes empty.

This paradigm facilitates load balancing, as
the workload is dynamically allocated to
free processes.

17

\Work Pool

| mplementing the work pool to allow: effiicient
accesses by multiple processes s not easy:
especially in'a message passing model. The
work pool may be an unordered set, a queue or
apriority gueue.

Pregrammability I'ssues

We define programmability’ as a combination of
v Structuredness
v Generality

v Portability

Parallel PregrammingViedels
|mplicit parallelism

o If the programmer does not explicitly specify
parallelism, but let the compiler and the run-time
support system automatically: exploit it.

Explicit Parallelism

e It means that parallelism is explicitly specified in
the source code by the programming using special
language constructs, complex directives, or library
cells, B

10

lmplicit Paralliel Pregramming Moedeis
|mplicit Parallelism: Parallelizing Compilers

» Automatic parallelization of sequential programs
* Dependency Analysis
s Data dependency

* Control dependency

Remark
Users belief is influenced by the currently
disappointing performance. of automatic teols
(Implicit parallelism) and partly: by a theoretical
results obtained “

HTIPHCILE Fal dllie
Pregramming/Viedels

Effectiveness of Parallelizing Compilers

+» Question :

e Are parallelizing compilers effective in
generalizing efficient code from sequential
programs?

— Some performance studies indicate that may
not be a effective

— User direction and Run-Time Parallelization
techniques are needed

11

Implicit Paralliel Pregramming Moedeis
|lmplicit Parallelism

+» Bernstein’s Theorem

* |t is difficult to decide whether two, operations
In an imperative seguential pregram can be
executed in-parallel

* Animplication of thistheorem is that thereis no
automatic technigue, compiler time or runtime
that cani exploit all parallelism in a sequential
program =

Implicit Parallel Pregramming Moedels

T 0o overcome this theoretical limitation, two solutions
have been suggested

* The first solution: is to abolish the imperative
style altogether, and to use a programming
language which; makes parallelism recognition
easier

* The second solution is to use explicit
parallelism 2

12

Explicit Parallel Programming Miedéels

Three deminant parallel programming
modelsare:

» [Data-parallel model

+ M essage-passing model

+» Shared-variable model

Explicit Parallel Programming Miedéels

Main Message- .
Data-Parallel | DataParallel | passing | Shared-Variable
Control flow
(threading) Single Multiple Multlple
Synchrony Loosely synchronous Asynchronous

Interactlon Implicit Explicit Epr|C|t

Data Implicit or Explicit Implicit or
allocation semiexplicit semiexplicit
26

13

Explicit Parallel Programming Miedéels

Message — Passing
. Message passing has the follewing|characteristics:
> Multithreading

>Asynchronous parallelism (MPI reduce)

) Separate address spaces (Interaction by
MPI/PVM)

> Explicit interaction

>Explicit allocation by user

Explicit Parallel

Pregramming/Viedels
Message — Passing

» Programs are multithreading and asynchronous
requiring explicit synchronization

* More flexible than the data parallel model, but it
still lacks support for the work pool paradigm.

» PVM and MPI can be used

» Message passing programs exploit large-grain
parallelism

14

Explicit Parallel Programming Miedéels
Shared Variable Model

It has a single address space (Smilar to data parallel)

It 1s multithreading and asynchroenous (Similar to
message-passing model)

Data resides in single shared address space, thus does
not have to be explicitly allocated

Workload can be ether explicitly or implicitly
allocated

Communication is done implicitly: through shared
reads and writes of Vvariables. However
synchronization is explicit 2

Explicit Parallel Programming Miedéels

Shared variable model

e [he shared-variable model assumes the existence of a
single; shared address space where all shared data reside

Programs are multithreading and asymchronous, reguiring
explicit synchronizations

Efficient parallel programs that are loosely synchronous
and have regular communication patterns, the shared
variable approach is not easier than the message passing
model

15

Other Parallel Programming/Miedels

e [Functional programming

e |_ogic programming

e Computing by learning

e Object oriented programming

16

