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Mathematical Models

� Many Mathematical models which attempt to interpret 
real problems can be formulated in terms of rate of change 
of one or more variables as such naturally lead to partial 
differential equations. 

� Methods for solution (Analytical / Numerical) of PDEs 
tend to be very problem dependent, so PDEs are usually 
solved by custom written analytical methods or/and 
software to take maximum advantage of particular 
features of given problem.
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Classification of PDEs

Following terms are often used to describe PDEs even 
when meaning is not so precise. 

� Hyperbolic PDEs describe time-dependent physical 
processes such as wave motion, that are not evolving 
towards steady state.

� Parabolic PDEs describe time-dependent physical 
processes, such as diffusion of heat, that are evolving 
toward steady state. 

� Elliptic PDEs describe processes that have already reached 
steady state, and hence are time independent.
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Parallel Matrix Computations
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Mapping of Matrices onto Processors

Striped Partitioning

• Division into group of complete rows or columns

• Assign each processor one such group

• If each group contains an equal number of rows or columns -

Uniform partitioning 

Block-striped partitioning

Columnwise

striping

Rowwise

striping

6
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>                           August, 2002

Mapping of Matrices onto Processors

Block-striped partitioning

• Each processor is assigned contiguous rows or columns

• Processor P
i 
contains columns with indices            

(n/p)i, (n/p)i+1,........, (n/p)(i+1) - 1.

n x n = size of the matrix; p = No. of processors

Cyclic-striped partitioning

• Distribution of rows or columns among the processors 

in  wraparound manner

• Processor Pi will have rows with indices 

i, i+p, i+2p, ....., i+n - p.
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Block-Cyclic striped partitioning

• Hybrid between block and Cyclic distribution

• Strip matrix into blocks of q rows (q = n/p)

• Distribution of these blocks among processors in cyclic manner

� We can partition an nxn matrix among a maximum of ‘n’ processors 

Mapping of Matrices onto Processors
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• Division of matrix into smaller square or rectangular block or

submatrices

• Distribution of such blocks or submatrices among processors

• All submatrices of same size - - Uniform partitioning 

Checkerboard Partitioning

Block-checkerboard partitioning
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Cyclic-checkerboard partitioning

Mapping the rows onto processors 

in a cyclic manner followed by the 

columns or vice-versa

Hybrid-checkerboard partitioning

• Block-cyclic checkerboard partitioning 

• Divide matrix into mxn blocks and map these blocks of  

size pxq in a cyclic manner

Checkerboard Partitioning
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� Partitioned square matrix maps naturally onto a 2D 

square mesh of processors

� It is often convenient to visualize the ensemble of 

processors as a logical 2D mesh 

� Unlike striping, the lowest level of granulate in 

checker- -boarding is one matrix per element

� Can exploit more concurrency then striping

Checkerboard Partitioning
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• Block partitioning leads to high granularity, which is 

recommended for high latency networks (EtherNet) 

• Cyclic distribution provides an opportunity for load 

balancing on network of workstations. If load balancing 

is not performed then overall efficiency of the code will 

be decided by the slowest processor OR it might lead to 

idling of the processors. 

• Most of the commercial Linear Algebra libraries make 

use of block-cyclic distribution (e.g. ScaLAPACK & 

PetSc) 

Mapping of Matrices onto Processors
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Matrix - Vector Multiplication

Parallel Formulation

Rowwise Striping

Matrix A
Vector 

X

P
ro

ce
ss

or
s

Initial partitioning Distribution of the full vector among all 

the processors by all-to-all broadcast
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Rowwise Striping

Matrix A
Vector 

Y

P
r
o
c
e
s
s
o
r
s

Entire vector distributed to each 

processor after the broadcast

Final distribution of the matrix 

and the result vector Y

Matrix - Vector Multiplication

Parallel Formulation
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Matrix - Vector Multiplication

Checkerboard 
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Matrix - Matrix multiplication

[A] [B] [A]

=

Checkerboard partitioning

16
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in>                           August, 2002

� A simple Parallel Algorithm

� Cannon’s Algorithm

� Fox’s Algorithm

� The DNS algorithm

Matrix - Matrix multiplication
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How to Decide the Partitioning ?

� Efficient memory access pattern

� Most of the RISC based processors have hierarchical system of 

memory. Data access from high hierarchy is order of magnitude faster 

than lower hierarchy. 

Checkerboard partitioning leads to efficient memory access pattern 

thus achieve better performance of serial part on parallel machines. 

� Minimum inter-processor communication 

� On conflict between memory access and inter-processor 

communication, we give preference to memory access. 

Reason : 1. Memory is no more a problem 

2. Even on shared memory computers inter-processor   

communication takes hundreds of cycles which is 

prohibitively expensive. 
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Mathematical Formulation

◆ Acoustic Wave Equation in a Heterogeneous Medium

◆ If u and w are x and z components of velocity vector, then

◆ Hyperbolic System of Equations
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Finite Difference 

Formulation

Explicit finite difference predictor :
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3D Acoustic Wave Modeling

3D Acoustic Wave Equation
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Domain Decomposition

& Interprocessor Communication

Stripe Partitioning

z

x

Y� Balance the workload

� Minimize the perimeters of the

Subdomain boundaries
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Hybrid Stripe Partitioning

Checkerboard 

Partitioning

Domain Decomposition

& Interprocessor Communication
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3D Wave Propagation

Performance Analysis
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Matrix Computations

Dense Matrix Sparse Matrix
Full Matrix with few 

zero entries
Majority of elements 

zero

[A]{X} = [B]

Solvers 

1.  Direct Solvers

2.  Iterative Solvers
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Why do we need direct solvers

� Direct solvers  give accuracy to the machine precision

� Iterative Solvers in general are very inefficient unless used 

with good preconditioners. Selection of preconditioner is 

one of the most critical phase of designing. They may lead 

to large overheads on matrix multiplication. 

Example : In general most of the iterative solvers act like 

smoothers, which reduces high frequency errors very fast 

but their convergence is very slow for low frequency error.

For unsymmetrical matrices arises from convective terms in 

fluid flows (They have directional biasness)                Direct 

methods are more reliable. 
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Why we don’t use direct solvers ? 

� High memory requirements

Even in the case of sparse matrices Gauss elimination or 

LU factorization may lead to storage requirements well 

beyond most of the present machines. 

� Hard to Parallelize 

The parallelization of best serial algorithm is often leads to 

poor  efficiency on distributed parallel machines.  

� Good serial algorithm may not be good parallel algorithm

We need a non- conventional thinking for developing 

efficient parallel algorithm for direct solvers. 
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System of Linear Equations

Ax = b,

A is nxn matrix, b is given n-vector, and x is unknown 

solution n-vector to be determined. 

To solve a linear system, we transform it into one whose 

solution is same but easier to compute.

One such form is LU factorization, A = LU, where L is unit 

lower triangular and U is upper triangular. 

LU factorization of general nonsingular matrix A can be 

computed by Gaussian elimination. 

LU Factorization
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LU Factorization

System of Linear Equations

If A = LU, then system Ax = b becomes

Ax = LU x = b, 

Which can be solved by forward-substitution in lower triangular 

system

L y = b,

followed by back-substitution in upper triangular system 

U x = y.

In general, row interchanges (Pivoting) may be necessary for  

existence and numerical stability of LU factorization

In the case of irreducible, Symmetric Positive Definite (SPD) 

matrix, the system can be solved by Cholesky factorization. 
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Difficulties in efficient Parallel Implementations

Substantial parallelism inherent in Sparse direct methods, but 

limited success has been achieved in developing efficient 

general purpose parallel formulation because :

� The amount of computation relative to the size of the system to be 

solved is very small. 

� Even the modest communication might lead to poor efficiency due to 

poor computation to communication ratio. This becomes even severe for 

parallel computation on NOW / COW. 

� Poor design criterion: Most of the serial formulation give stress on 

minimizing memory use and operation count. These criteria may not 

lead to scalable parallel formulation. 
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Fig. A typical computation in Gaussian elimination

Gaussian elimination
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Fig. Computation load on different processors in block and cyclic-

striped partitioning of an 8 Χ 8 matrix onto 16 processors during

Gaussian elimination iteration corresponding to k = 3.

Gaussian elimination
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Fig. Computation load on different processors in block and cyclic-

striped partitioning of an 8 Χ 8 matrix onto 16 processors 

during Gaussian elimination iteration corresponding to k = 3.

Gaussian elimination
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Fig. Various steps in the Gaussian elimination iteration corresponding to k = 3 

for an 8 Χ 8 matrix on 64 processors of a two dimensional mesh

Gaussian elimination
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Cholesky Factorization

A : nxn Symmetric and Positive Definite (SPD) matrix.  

Cholesky factorization :     A = L LT

Where L is lower triangular matrix with positive diagonal 

entries. 

Given Cholesky factorization, linear system  Ax = b,  can 

be solved by successive forward and backward 

substitutions 

Ly = b and LT x = y
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Cholesky Factorization

Algorithm Features

Features of Cholesky make it attractive for SPD matrices :

• All n square roots involved are of positive numbers, so 

algorithms is well defined. 

• No pivoting is required for numerical stability. 

• Only lower triangular portion of A is accessed, and hence 

upper triangular portion need not to be stored. 

• Factor L is computed in place, overwriting lower triangle 

of A

• Only n3/6 multiplications and similar number of 

additions are required. 
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Cholesky Factorization

Parallel Algorithm
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for k = 1 to min(i,j) - 1

recv         

recv

end 

if  i = j  then 

broadcast        to task (k,i) and (i,k), k = i+1, ……,n 

else if I < j then 

recv 

broadcast          to task (k,j)  k = i+1, ……,j

else

recv

broadcast        to task (i,k)  k = j+1, ……,i

end 

kjakiajiajia ,*,,, −=

iiaa ii ,, =

iiajiajia ,/,, =

jka ,
kia ,

iia ,

iia ,

jia ,

jja ,

jjajiajia ,/,, =

jia ,

Parallel Algorithm

Cholesky Factorization
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Cholesky Implementations 

Three choices of index for outer loop yield different 

algorithms with memory access patterns

� Row-Cholesky: With i in outer loop, inner loops solve triangular 

system for each new row in term of previous computed rows. 

� Column-Cholesky: with j in outer loop, inner loops compute 

matrix-vector product that gives effect of previously computed 

columns on column currently being computed.

� Checkerboard-Cholesky: With k in outer loop, inner loops apply 

current columns as rank-1 update to remaining unreduced 

submatrix. 
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Cholesky Implementations 

Memory Access Patterns

Row-Cholesky:

Column-Cholesky

Checkerboard-Cholesky

Modified

Used for Modification

Good for well ordered equation: pivot 

selection is easy

Better but less intitutive
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Cholesky Implementations 

Column Operations

cmod(j,k) : column j is modified by a multiple of prior 

column k. 

cdiv(j)     : column j is scaled by square root of its 

diagonal elements 
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Cholesky Implementations

Data Dependencies

cdiv(k)

cmod(k+1,k) cmod(k+2,k) cmod(n,k)

cmod(1,k) cmod(2,k) cmod(k,k-1)……..

……..
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Data Dependencies

• cmod(k,*) operations along bottom can be done in any order, 

but they all have same target column, so updating must be 

coordinated to preserve data integrity. 

• cmod(*,k) operations along top can be done in any order, and 

they all have different target columns, so updating can be done 

simultaneously. 

• Performing cmods concurrently is most important source of 

parallelism in column-oriented factorization. 

• For dense matrix, each cdiv(k) depends on immediately 

preceding column, so only one cdiv can be done at a time.

Cholesky Implementations
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