
1

1
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Writing Parallel Scientific Applications on PARAM

Dheeraj Bhardwaj

Department of Computer Science & Engineering

Indian Institute of Technology, Delhi –110 016 India

http://www.cse.iitd.ac.in/~dheerajb

2
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Mathematical Models

� Many Mathematical models which attempt to interpret
real problems can be formulated in terms of rate of change
of one or more variables as such naturally lead to partial
differential equations.

� Methods for solution (Analytical / Numerical) of PDEs
tend to be very problem dependent, so PDEs are usually
solved by custom written analytical methods or/and
software to take maximum advantage of particular
features of given problem.

2

3
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Classification of PDEs

Following terms are often used to describe PDEs even
when meaning is not so precise.

� Hyperbolic PDEs describe time-dependent physical
processes such as wave motion, that are not evolving
towards steady state.

� Parabolic PDEs describe time-dependent physical
processes, such as diffusion of heat, that are evolving
toward steady state.

� Elliptic PDEs describe processes that have already reached
steady state, and hence are time independent.

4
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Parallel Matrix Computations

3

5
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Mapping of Matrices onto Processors

Striped Partitioning

• Division into group of complete rows or columns

• Assign each processor one such group

• If each group contains an equal number of rows or columns -

Uniform partitioning

Block-striped partitioning

Columnwise

striping

Rowwise

striping

6
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Mapping of Matrices onto Processors

Block-striped partitioning

• Each processor is assigned contiguous rows or columns

• Processor P
i
contains columns with indices

(n/p)i, (n/p)i+1,........, (n/p)(i+1) - 1.

n x n = size of the matrix; p = No. of processors

Cyclic-striped partitioning

• Distribution of rows or columns among the processors

in wraparound manner

• Processor Pi will have rows with indices

i, i+p, i+2p,, i+n - p.

4

7
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Block-Cyclic striped partitioning

• Hybrid between block and Cyclic distribution

• Strip matrix into blocks of q rows (q = n/p)

• Distribution of these blocks among processors in cyclic manner

� We can partition an nxn matrix among a maximum of ‘n’ processors

Mapping of Matrices onto Processors

8
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

• Division of matrix into smaller square or rectangular block or

submatrices

• Distribution of such blocks or submatrices among processors

• All submatrices of same size - - Uniform partitioning

Checkerboard Partitioning

Block-checkerboard partitioning

5

9
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cyclic-checkerboard partitioning

Mapping the rows onto processors

in a cyclic manner followed by the

columns or vice-versa

Hybrid-checkerboard partitioning

• Block-cyclic checkerboard partitioning

• Divide matrix into mxn blocks and map these blocks of

size pxq in a cyclic manner

Checkerboard Partitioning

10
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� Partitioned square matrix maps naturally onto a 2D

square mesh of processors

� It is often convenient to visualize the ensemble of

processors as a logical 2D mesh

� Unlike striping, the lowest level of granulate in

checker- -boarding is one matrix per element

� Can exploit more concurrency then striping

Checkerboard Partitioning

6

11
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

• Block partitioning leads to high granularity, which is

recommended for high latency networks (EtherNet)

• Cyclic distribution provides an opportunity for load

balancing on network of workstations. If load balancing

is not performed then overall efficiency of the code will

be decided by the slowest processor OR it might lead to

idling of the processors.

• Most of the commercial Linear Algebra libraries make

use of block-cyclic distribution (e.g. ScaLAPACK &

PetSc)

Mapping of Matrices onto Processors

12
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Matrix - Vector Multiplication

Parallel Formulation

Rowwise Striping

Matrix A
Vector

X

P
ro

ce
ss

or
s

Initial partitioning Distribution of the full vector among all

the processors by all-to-all broadcast

7

13
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Rowwise Striping

Matrix A
Vector

Y

P
r
o
c
e
s
s
o
r
s

Entire vector distributed to each

processor after the broadcast

Final distribution of the matrix

and the result vector Y

Matrix - Vector Multiplication

Parallel Formulation

14
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Matrix - Vector Multiplication

Checkerboard

8

15
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Matrix - Matrix multiplication

[A] [B] [A]

=

Checkerboard partitioning

16
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

� A simple Parallel Algorithm

� Cannon’s Algorithm

� Fox’s Algorithm

� The DNS algorithm

Matrix - Matrix multiplication

9

17
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

How to Decide the Partitioning ?

� Efficient memory access pattern

� Most of the RISC based processors have hierarchical system of

memory. Data access from high hierarchy is order of magnitude faster

than lower hierarchy.

Checkerboard partitioning leads to efficient memory access pattern

thus achieve better performance of serial part on parallel machines.

� Minimum inter-processor communication

� On conflict between memory access and inter-processor

communication, we give preference to memory access.

Reason : 1. Memory is no more a problem

2. Even on shared memory computers inter-processor

communication takes hundreds of cycles which is

prohibitively expensive.

18
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Mathematical Formulation

◆ Acoustic Wave Equation in a Heterogeneous Medium

◆ If u and w are x and z components of velocity vector, then

◆ Hyperbolic System of Equations

∂
∂

ρ∂
∂+

∂
∂

ρ∂
∂+

∂
∂

ρ∂
∂=

∂
∂

z
p

zy
p

yx
p

xt

p
K

1111
2

2

z
p

t
w

and
x
p

t
u

,
x
p

t
u

∂
∂=

∂
∂ρ

∂
∂=

∂
∂ρ

∂
∂=

∂
∂ρ

z
P

C
y
P

B
x
P

A
t
P

∂
∂+

∂
∂+

∂
∂=

∂
∂

=

w

v

u

p

P

ρ
λ

=
−

0000

0000

000

000
1

A

ρ

λ

= −

0000

000

0000

000

1B

ρ

λ

=

− 000

0000

0000

000

1

C

10

19
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Finite Difference

Formulation

Explicit finite difference predictor :

()n
k,j,i

n
1k,j,i

n
1k,j,i

n
k,1j,i

n
k,1j,i

n
k,j,1i

n
k,j,1i

1n
k,j,i

n
k,j,ik,j,i

P6PPPPPPa

P)tA1(P2P̂)tA1(

−+++++

+∆−−=∆+

−+−+−+

−

Explicit finite difference corrector :

a
t
x

v=

∆
∆

2

where,

)]P̂6P̂P̂P̂P̂P̂P̂(aP)tA1[(

P̂2P̂)1)(tA1(P)tA1(

k,j,i1k,j,i1k,j,ik,1j,ik,1j,ik,j,1ik,j,1i
1n

k,j,i

k,j,ik,j,i
1n

k,j,i

−++++++∆−γ

−γ+γ−∆+=∆+

−+−+−+
−

+

We assume ∆x = ∆y = ∆z

20
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

3D Acoustic Wave Modeling

3D Acoustic Wave Equation

))()(()(SSS zzyyxxtf
z
P

y
P

x
P

t
P

V
−−−+

∂
∂+

∂
∂+

∂
∂=

∂
∂ δ

2

2

2

2

2

2

2

2

2

1

Finite Difference Discretization

�

�

�

� �

tn+1 Level

tn-1 Level

tn Level

�

�

�

�

11

21
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Domain Decomposition

& Interprocessor Communication

Stripe Partitioning

z

x

Y� Balance the workload

� Minimize the perimeters of the

Subdomain boundaries

22
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Hybrid Stripe Partitioning

Checkerboard

Partitioning

Domain Decomposition

& Interprocessor Communication

12

23
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

3D Wave Propagation

Performance Analysis

Number of Processors

Problem Size
400 X 400 X400

0

1000

2000

3000

4000

5000

8 16 32 64

0

100

200

300

400

500

600

8 16 32 64

Stripe

Hybrid-Stripe

Checkerboard

Problem Size
200 X 200 X200

Number of Processors

E
xe

cu
ti

o
n

ti
m

e
(s

ec
)

24
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Matrix Computations

Dense Matrix Sparse Matrix
Full Matrix with few

zero entries
Majority of elements

zero

[A]{X} = [B]

Solvers

1. Direct Solvers

2. Iterative Solvers

13

25
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Why do we need direct solvers

� Direct solvers give accuracy to the machine precision

� Iterative Solvers in general are very inefficient unless used

with good preconditioners. Selection of preconditioner is

one of the most critical phase of designing. They may lead

to large overheads on matrix multiplication.

Example : In general most of the iterative solvers act like

smoothers, which reduces high frequency errors very fast

but their convergence is very slow for low frequency error.

For unsymmetrical matrices arises from convective terms in

fluid flows (They have directional biasness) Direct

methods are more reliable.

26
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Why we don’t use direct solvers ?

� High memory requirements

Even in the case of sparse matrices Gauss elimination or

LU factorization may lead to storage requirements well

beyond most of the present machines.

� Hard to Parallelize

The parallelization of best serial algorithm is often leads to

poor efficiency on distributed parallel machines.

� Good serial algorithm may not be good parallel algorithm

We need a non- conventional thinking for developing

efficient parallel algorithm for direct solvers.

14

27
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

System of Linear Equations

Ax = b,

A is nxn matrix, b is given n-vector, and x is unknown

solution n-vector to be determined.

To solve a linear system, we transform it into one whose

solution is same but easier to compute.

One such form is LU factorization, A = LU, where L is unit

lower triangular and U is upper triangular.

LU factorization of general nonsingular matrix A can be

computed by Gaussian elimination.

LU Factorization

28
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

LU Factorization

System of Linear Equations

If A = LU, then system Ax = b becomes

Ax = LU x = b,

Which can be solved by forward-substitution in lower triangular

system

L y = b,

followed by back-substitution in upper triangular system

U x = y.

In general, row interchanges (Pivoting) may be necessary for

existence and numerical stability of LU factorization

In the case of irreducible, Symmetric Positive Definite (SPD)

matrix, the system can be solved by Cholesky factorization.

15

29
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Difficulties in efficient Parallel Implementations

Substantial parallelism inherent in Sparse direct methods, but

limited success has been achieved in developing efficient

general purpose parallel formulation because :

� The amount of computation relative to the size of the system to be

solved is very small.

� Even the modest communication might lead to poor efficiency due to

poor computation to communication ratio. This becomes even severe for

parallel computation on NOW / COW.

� Poor design criterion: Most of the serial formulation give stress on

minimizing memory use and operation count. These criteria may not

lead to scalable parallel formulation.

30
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Fig. A typical computation in Gaussian elimination

Gaussian elimination

16

31
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Fig. Computation load on different processors in block and cyclic-

striped partitioning of an 8 Χ 8 matrix onto 16 processors during

Gaussian elimination iteration corresponding to k = 3.

Gaussian elimination

32
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Fig. Computation load on different processors in block and cyclic-

striped partitioning of an 8 Χ 8 matrix onto 16 processors

during Gaussian elimination iteration corresponding to k = 3.

Gaussian elimination

17

33
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Fig. Various steps in the Gaussian elimination iteration corresponding to k = 3

for an 8 Χ 8 matrix on 64 processors of a two dimensional mesh

Gaussian elimination

34
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cholesky Factorization

A : nxn Symmetric and Positive Definite (SPD) matrix.

Cholesky factorization : A = L LT

Where L is lower triangular matrix with positive diagonal

entries.

Given Cholesky factorization, linear system Ax = b, can

be solved by successive forward and backward

substitutions

Ly = b and LT x = y

18

35
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cholesky Factorization

Algorithm Features

Features of Cholesky make it attractive for SPD matrices :

• All n square roots involved are of positive numbers, so

algorithms is well defined.

• No pivoting is required for numerical stability.

• Only lower triangular portion of A is accessed, and hence

upper triangular portion need not to be stored.

• Factor L is computed in place, overwriting lower triangle

of A

• Only n3/6 multiplications and similar number of

additions are required.

36
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cholesky Factorization

Parallel Algorithm

19

37
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

for k = 1 to min(i,j) - 1

recv

recv

end

if i = j then

broadcast to task (k,i) and (i,k), k = i+1, ……,n

else if I < j then

recv

broadcast to task (k,j) k = i+1, ……,j

else

recv

broadcast to task (i,k) k = j+1, ……,i

end

kjakiajiajia ,*,,, −=

iiaa ii ,, =

iiajiajia ,/,, =

jka ,
kia ,

iia ,

iia ,

jia ,

jja ,

jjajiajia ,/,, =

jia ,

Parallel Algorithm

Cholesky Factorization

38
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cholesky Implementations

Three choices of index for outer loop yield different

algorithms with memory access patterns

� Row-Cholesky: With i in outer loop, inner loops solve triangular

system for each new row in term of previous computed rows.

� Column-Cholesky: with j in outer loop, inner loops compute

matrix-vector product that gives effect of previously computed

columns on column currently being computed.

� Checkerboard-Cholesky: With k in outer loop, inner loops apply

current columns as rank-1 update to remaining unreduced

submatrix.

20

39
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cholesky Implementations

Memory Access Patterns

Row-Cholesky:

Column-Cholesky

Checkerboard-Cholesky

Modified

Used for Modification

Good for well ordered equation: pivot

selection is easy

Better but less intitutive

40
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cholesky Implementations

Column Operations

cmod(j,k) : column j is modified by a multiple of prior

column k.

cdiv(j) : column j is scaled by square root of its

diagonal elements

21

41
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Cholesky Implementations

Data Dependencies

cdiv(k)

cmod(k+1,k) cmod(k+2,k) cmod(n,k)

cmod(1,k) cmod(2,k) cmod(k,k-1)……..

……..

42
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

Data Dependencies

• cmod(k,*) operations along bottom can be done in any order,

but they all have same target column, so updating must be

coordinated to preserve data integrity.

• cmod(*,k) operations along top can be done in any order, and

they all have different target columns, so updating can be done

simultaneously.

• Performing cmods concurrently is most important source of

parallelism in column-oriented factorization.

• For dense matrix, each cdiv(k) depends on immediately

preceding column, so only one cdiv can be done at a time.

Cholesky Implementations

22

43
Dheeraj Bhardwaj <dheerajb@cse.iitd.ac.in> August, 2002

References

• Albert Y.H. Zomaya, Parallel and distributed Computing Handbook,

McGraw-Hill Series on Computing Engineering, New York (1996).

• Ernst L. Leiss, Parallel and Vector Computing A practical Introduction,

McGraw-Hill Series on Computer Engineering, New York (1995).

• Ian T. Foster, Designing and Building Parallel Programs, Concepts and

tools for Parallel Software Engineering, Addison-Wesley Publishing

Company (1995).

• Kai Hwang, Zhiwei Xu, Scalable Parallel Computing (Technology

Architecture Programming) McGraw Hill New York (1997)

• Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis,

Introduction to Parallel Computing, Design and Analysis of Algorithms,

Redwood City, CA, Benjmann/Cummings (1994).

