Lecture—11
Solution of Nonlinear Equations- 111

Efficiency of a method

The efficiency index of an iterative method is defined by
E =r 1/n
r: rate of convergence of the method
n: total number of functions and derivative evaluations at each step of iteration.

Obvioudly, if the value of the index is larger, then the method is more efficient.

Example:
Method n r E
Secant 1 1.62 1.62
Newton 2 2 1.41

Methods for multipleroots

Definition: If we canwritef(x) =0as f (x) =(x—x*)"g(x) =0, where g(x) is bounded
and g(x*) = 0, then x* iscalled amultiple root of multiplicity m.

If x* is a multiple root of multiplicity m of equation f(x) = O, then we have from
definition of multiple root:

f(x*)=f'(x*)=-=fMY(x*)=0and f"(x*)20
Note: It can be verified that al iterative methods discussed have only linear rate of

convergence when m > 1. For example, for Newton-Raphson method, we get the error
equation as

m+1 *
Evn :(1_ij£k t— : 5k2 f m ()i ) +O(5|f)
m m-(m+1) f ™ (x*)

if m#1, &, = (1—ij£k +0(&?), Which shows the linear convergence.
m

When the multiplicity of the root is known in advance we can modify the methods by
introducing parameters dependent on the multiplicity of the root to increase their order of
convergence. For example — Newton-Raphson method




Xy = X —0—

a arbitrary parameter to be determined.

m+1 *
Error equation for this method: ¢, ,, = (1—£J£k +— a &l ) +0(g)).
m m<(m+1) f™(x*)

If the method has quadratic rate of convergence, the coefficient of &, must vanish, which
gives

1—£:O:a=m
m

Thus the method: Xesg = X —M—-.

If the multiplicity is not known in advance, then use the following procedure:

It is known that f(x) = 0 has aroot x* of multiplicity m, then f’(x) =0 hasthe same root

x* and its of multiplicity (m-1). Hence g(x) =% has a simple root x*, we can now
X
use Newton-Raphson method X, ., = X, —g—',‘ to find approximate value of the multiple
9k
TP f f,
root x*. Simplification gives X,,; = X, ———5————.
fo = fify

Verify this method has second order convergence.

Zerosof Polynomials

Till now we have discussed methods for finding single zero of an arbitrary function in
one dimension. For a specia case of a polynomia p(x) of degree n, one often may need
to find al “n” of its zeros, which may be complex even if the coefficients of the
polynomial arereal. There are several approaches available:
1. Use one of the methods such as Newton to find a single root X, , then consider a
deflated polynomial p()%x —x,) of degree one less. Repeat until al zeros have
1

been found.



Its is a good idea to go back and refine each root using original polynomial p(x) to
avoid contamination due to rounding error in forming the deflated polynomial.

2. Form companion matrix of polynomia and compute the eigen values. Thisis used
by MATLAB.

3. Usemethod designed specifically for finding all roots of polynomial.

System of Non-linear Equations

System of equations tend to be more difficult to solve than single nonlinear equations for
anumber of reasons.

1. A much wider range of behavior is possible. So that theoretical analysis of the
existence and number of solutions is much more complex.

2. No single way, in general, to guarantee convergence to desire solution ot to
bracket solution to produce absolutely safe method.

3. Computational overhead increases rapidly with dimension of the problem.

Fixed Point Iteration for System of equations

Fixed point problem for g:0" - 0" is to find a vector x such that x = g(x)
corresponding fixed point iteration isssmply x,,, = g(X,) given some starting point X, .

Newton’s M ethod
Many methods for solving nonlinear equations in one-dimension do not generalized

directly to n-dimensions. The most popular method that does generalized is Newton's
method.

For adifferentiable function f : 0" - O"

Truncated Taylor series: f(x+s)= f(x)+J,(x)s, where J, (x)isthe Jacobian matrix
of . (x)
J(X). =—
D0k =750
If “s” satisfies the linear system J, (x)s = - f(X), then “x+s” is taken as an approximate
zeroof f.




In this sense Newton’s method replaces a system of nonlinear equations with a system of
linear equations, but since the solution of the two systems are not identical in general, the
process must be repeated until the approximate solution is reached as accurate as desired.

Algorithm
X, = Initial guess
fork=0,1,23, ....
Solve J,(x.)s, =—f(x,)for s, (ComputeNewton Step)
Xpap = X TS, (Update solution)
end

Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n dimensionsis substantial.
1. Computing Jacobian matrix costs n” scalar function evaluations.

2. Solving linear system costs O(n*) operations.

Secant Updating M ethod

The partial derivatives that make up the Jacobian matrix could be replaced by finite
difference approximation along each coordinate direction, but this would entail additional
function evaluation purely for the purpose of obtaining derivative information. Instead we
take our own cue from the secant method for nonlinear equations in one dimension which
avoids explicitly computing derivatives by approximating the derivatives based on the
change in function val ues between successive iterates.

Secant updating methods reduce cost of the Newton’s method by

1. Using function values at successive iterates to build approximate Jacobian and
avoiding explicit evaluation of derivatives.

2. Updating factorization of approximate Jacobian rather than refactoring it a each
iteration.

Note: Most secant updating methods have superlinear but not quadratic convergence rate;
often cost less overall than Newton’ s method.

One of the Simples and most effective secant updating method for solving nonlinear
systemsis Broyden’s M ethods.



Broyden’s Methods

This method begins with an approximate Jacobian matrix and updates it (or a
factorization of it) at each iteration,

Algorithm

X, = Initial guess
B, = Initial Jacobian approximation (Can be true Jacobian or

Finite difference approximation or
to avoid derivatives we simply start with B,=1)

fork=0,1,23, ....
Solve B,s, =-f(x,)for s, (ComputeNewton like Step)
Xpap = X S, (Update solution)
Y = F (X)) = F (%)
B, = B + ((yk - Bksk)s%_s (Update approximate Jacobian)
end k

The motivation for the formulafor the update Jacobian approximation B, ., isthat it gives
the least change to B, subject to satisfying the secant equation

B (Xisr = %) = F(Xpup) = £(%,)
In this way the sequence of matrices B, gains and maintains information about the

behavior of the function f along the various directors generated by the a gorithm, without
the need for the function to be sampled purely for the purpose of obtaining derivative
information.

Updating B, as just indicated would still leave on needing to solve a linear system at
each iteration at acost of O(n?) arithmetic.

Therefore, in practice a factorization of B, is updated instead updating B, directly, so
that total cost per iterationisonly O(n®).



