
Lecture – 9

Solution of Nonlinear Equations

In this chapter we will discuss the problem of identifying the roots of the equations and
system of equations. The basic formulation of the problem in the simplest case is this:

Given a function f(x), we seek value x for which f(x) = 0. Solution x is called a root of
equation, or zero of function f. Thus, the problem is known as root or zero finding.

We will be dealing with following two important cases:
1. Single nonlinear equation in one unknown, ℜ→ℜ:f , which has scalar x as

solution such that f(x) = 0.
2. System of n coupled nonlinear equations in n unknowns, nnf ℜ→ℜ: , which

has vector x as solution for which all components of f are zero simultaneously.

Examples: (a) Nonlinear equation in one dimension:
0)sin(42 =− xx ,

for which x = 1.9 is one approximate solution.

(b) System of nonlinear equations in two dimensions:
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for which Tx ]5.05.0[= is solution vector.

Existence and Uniqueness of Solutions

It is often difficult to determine the existence or number solutions to nonlinear equations.
Whereas for system of linear equations the number of solutions must be either zero, one
or infinitely many, nonlinear equations can have any number of solutions. Thus,
determining existence and uniqueness of solutions is more complicated for nonlinear
equations than for linear equations.

Although it is difficult to make any assertion about solution of nonlinear equations, there
are nevertheless some useful local criteria that guarantee existence of a solution. The
simplest for these is for one-dimensional problems, for which the Intermediate Value
theorem provides a sufficient condition for a solution, which says that if f is continuous
on a closed interval [a,b], and c lies between f(a) and f(b), then there is a value

],[* bax ∈ such that f(x*) = c. Thus, if f(a) and f(b) differ in sign, then by taking c = 0 in
the theorem we cann conclude that there must be a root with in the interval [a,b]. Such an
interval [a,b] for which the sign of f differs at its endpoints is called a bracket for a
solution of the one-dimensional nonlinear equation f(x) = 0.

Note: There is no simple analog for n dimensions.



The nonlinear equations can have any number of solutions. It can have a simple as well
as multiple roots.

Multiple Root

Nonlinear equation may have multiple root, where both function and derivatives are zero,
i.e. f(x) = 0 and f”(x) = 0. Geometrically this property means that the curve defined by f
has a horizontal tangent on the x-axis. More generally for a smooth function f if

0*)(*)(*)(*)( )1( ===′′=′= − xfxfxfxf m
K , then x* is a multiple root of

multiplicity m. If m =1 then x* is called a simple root.

Sensitivity and Conditioning

The sensitivity of the root-finding problem for a given function is opposite to that for
evaluating the function: if the function value is insensitive to the value of the argument
then root will be sensitive. This property makes sense if f(x) = y, finding x given y has
opposite conditioning from finding y given x.

Absolute condition number of root finding problem for root x* of ℜ→ℜ:f is

*)(/1 xf ′ . This implies that the root is ill conditioned if tangent line is nearly horizontal.

In particular condition number for multiple root is infinite. Absolute condition number of

root finding problem for root x* of nnf ℜ→ℜ: is )(1 xJ f
− , where Jf is a Jacobian

matrix of f. If Jacobian matrix is nearly singular, root is ill conditioned.

What do we mean by approximate solution x̂ to nonlinear system? x̂ is an approximate
solution if either 0)ˆ( ≈xf or 0*ˆ ≈− xx . 0)ˆ( ≈xf corresponds to “small residual.”

0*ˆ ≈− xx measures closeness to (usually unknown) true solution x*. A solution

criterion is not necessarily “small” simultaneously. Small residual implies accurate
solution only if problem is well-conditioned.

Convergence Rate and Stopping Criteria

Unlike linear equations, most nonlinear equations can not be solved in finite number of
steps. Iterative methods are being used to solve nonlinear equations. The total cost of
solving problem depends on both the cost per iterations and the number of iterations
required. There is often a trade off between these two factors. To compare the
effectiveness of iterative methods, we need to characterize their convergence rate.

An iterative method is said to be of order ‘r’ or has the rate of convergence ‘r’, if ‘r’ is the
largest positive real number for which there exists a finite constant 0≠C such that

r

kk C εε ≤+1 , where *xxkk −=ε is the error in the kth iteration. C is the asymptotic

error constant usually depends on the derivatives of f(x) at x = x*. x* is the true solution.



For methods that maintain interval known to contain solution (e.g. Bisection method),
rather than specific approximate value for solution, take error to be length on interval
containing solution.

Some particular cases of interest:
Convergence Rate Digits gained per iteration

R = 1 Linear (C<1) Constant
R > 1 Superlinear Increasing
R = 2 Quadratic Double

One way to interpret the distinction between linear and superlinear is that, asymptotically
a linear convergent sequence gains a constant number of additional correct digits per
iteration, whereas a super linearly convergent sequence gains as increasing number of
additional correct digits with each iterations. For example, a quadratically convergent
method doubles the number of correct digits with each iteration.

A convergence theorem may tell us that an iterative scheme will converge for a given
problem, and how rapidly it will do so, but that does not specifically address the issue of
when to stop iterating and declare the resulting approximate solution to be good enough.
Devising a suitable stopping criterion is a complex and subtle issue for number of
reasons. We may know in principle that the error kε is becoming small, but since we do

not know the true solution, we have no way of knowing kε directly. The reasonable

surrogate is the relative change in successive iterates kkk xxx /1 −+ . If this is small

enough, we stop. To ensure that the problem has actually been solved, one may also want
to verify that the residual )( kxf is suitably small. kkk xxx /1 −+ and )( kxf are

not necessarily small simultaneously. They depend on the condition of the problem. In
addition, all of these criteria are affected by the relative scaling of the components of both
the argument x and the function f, and possibly other problem dependent features as well.
For all these reasons, a full proof-stopping criterion can be difficult to achieve and
complicated to state.

Bisection algorithm

In finite precision arithmetic, there may be no machine number x* such that f(x*) is
exactly zero. An alternative is to seek a very short interval [a, b] in which f has change in
sign. The intermediate value theorem of calculus makes sure that bracket has a value for
function goes to zero.

The bisection method makes use of Intermediate Value Theorem. It begins with an initial
bracket and successively reduces its length until the solution has been isolated as
accurately as desired (or the arithmetic precision will permit). At each iteration, the
function is evaluated at the midpoint of the current interval, and half of the interval can
be discarded, depending on the sign of the function at the mid point.



Algorithm:

while ((b-a) > tol) do
m = a + (b –a) / 2
if sign(f(a)) = sign(f(m)) then

a = m
else

b = m
end

end

Implementation issues:

Note a couple of points in the above algorithm that are designed to avoid the pitfalls
when it is implemented in finite-precision, floating-point arithmetic. First, perhaps the
most obvious formula for computing the midpoint m of the interval [a, b] is m = (a+b)/2.
However, with this formula the result in finite-precision arithmetic is not even guaranteed
o fall within the interval [a, b] (in two-digit, decimal arithmetic, for example, this formula
gives a “midpoint” 0.7 for the interval [0.67, 0.69]. Moreover, the intermediate quantity
a+b could overflow in extreme case, even though the mid point is well defined and
should be computable. A better alternative is the formula m = a + (b –a)/2, which cannot
overflow and is guaranteed to fall within the interval [a, b], provided and b have the same
sign (as will normally the case unless the root happens to be near zero). Second, testing
whether two function values f(x1) and f(x2) agree in sign mathematically equivalent to
testing whether the product f(x1) . f(x2) is positive or negative. In floating point
arithmetic, however such implementation is risky because the product could easily
underflow when function values are small, which they will be as we approach the root. A
safer alternative is to use the sign function explicitly, where sign(x) = 1 if ≥x 0 and
sign(x) = -1 if x < 0.

Convergence Analysis

The bisection method makes no use of the magnitude of the function values, only their
signs. As a result, bisection is certain to converge but does so rather slowly. Specifically,
at each successive iteration the length of the interval containing the solution, and hence a
bound on the possible error, is reduced by half. This means that the bisection method is
linearly convergent, with r = 1 and C = 0.5.

If the permissible error is ε , the approximate number of iterations required may be
determined from the relation

ε≤−
n
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Cost of the method: It requires one function value evaluation per iteration.
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