
Lecture 8

Error Bounds and Residuals

In addition to being a reliable indicator of near singularity, the condition number also
provides a quantitative bound for the error in the compounded solution to a linear system,
as we will now see.

Let x be the solution to Ax = b, and let x̂ be the solution to bbxA ∆+=ˆ with a perturbed
right hand side. If xxx −=∆ ˆ , then
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Which leads to the bound
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for possible relative change in solution due to relative change in RSH b.

Thus, the condition number of the matrix is an “amplification factor” that bounds the
maximum relative change in the solution due to a given relative change in the RHS
vector.

A similar result holds for relative change in the entries of the matrix A. If Ax = b and
bxEA =+ ˆ)( , then
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Taking norm, we get
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Result: the condition number times the relative change in the problem data bound the
relative change in the solution.

One simple way of interpreting the results is that the computed solution loses about
log10(cond(A)) decimal digits of accuracy relative to the accuracy of the input. The
example in the previous lecture, for instance has a condition number greater than 104, so
we would expect no correct digits in the solution to a linear system with the matrix unless
the input data are accurate to more than four decimal digits and the solution is compared
using arithmetic with more than four decimal digits of precision.

As a quantitative measure of sensitivity, the matrix condition number plays the same role
for the problem of solving linear systems – and yields the same type of relationship
between forward and backward error – as the general notion of condition number.



Note: The matrix condition number is never less than 1

Residuals

One way to verify a solution to an equation is to substitute it into the equation and see
how closely left and right sides match.

Residual vector of approximate solution x̂ to linear system Ax = b defined by
xAbr ˆ−=

In theory, if A is nonsingular, then oxxx =−=∆ ˆ , if and only if or = . In practice,

however these quantities are not necessarily small simultaneously.

Note that if the equation Ax = b is multiplied by an arbitrary non-zero constant, then the
solution is unaffected, but the residual is multiplied by same factor. Thus, the residual can
be made arbitrarily large or small, depending on the scaling of the problem, and hence
size of the residual is meaning less, unless it is considered relative to the size of the
problem data and the solution. Thus the relative residual for the approximated solution
x̂ is defined to be ( )xAr ˆ/ ⋅ .

To relate the error to the residual, we observe that
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Dividing both sides by x̂ and using the definition of cond(A), we then have
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Thus, a small relative residual implies a small relative error in the solution when, and
only when, A is well conditioned.

To see the implications of large residual, on the other hand, if computed solution
x̂ exactly satisfies
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So large relative residual implies large backward error in the matrix and algorithm used
to compute solution is unstable. Another way of saying this is that a stable algorithm will
invariably produce a solution with small relative residual, irrespective of the conditioning
of the problem, and hence a small residual by itself, sheds little light on the quality of the
approximate solution.



Example: Small residual
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Consider two approximate solutions
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The norms of their respective residuals are

4
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so which is the better solution?

We are tempted to say 1x̂ because of its much small residual. But the exact solution to

this system is [ ]Tx 1,1 −= , as is easily confirmed, so 2x̂ is actually much more accurate

than 1x̂ . The reason for this surprising behavior is that the matrix A is ill-conditioned as
we saw previously, and because of its large condition number, a small residual does not
imply a small error in the solution.

Iterative refinement

Given approximate solution 0x to linear system Ax = b, compute residual

00 Axbr −=
Now solve linear system 00 rAz = and take 001 zxx += as new and “better” approximate

solution, since
brrbAzAxzxAAx =+−=+=+= 0000001 )()(

Process can be repeated to refine solution successively until convergence, potentially
producing solution accurate to full machine precision.

Iterative refinement requires double storage, since both original matrix and LU
factorization required

Due to cancellation, residual usually must be computed with higher precision for iterative
refinement to produce meaningful improvement.

For these reasons, iterative improvement often impractical to use routinely, but can still
be useful in some circumstances.


