
LECTURE 3

Computer Arithmetic

Anyone who has fiddled with a calculator long enough knows that it’s relatively easy to trick it into producing
ridiculous answers. Indeed, in spite of the possibility of producing answers with a huge number of decimal
places, it is important to understand right from the start that (non-trivial) numerical calculations are always
wrong. And so unless one knows how wrong a numerical calculation might be, it is hard to say how accurate
the corresponding result might be. In order to determine the size of the error in a numerical calculation,
it is crucial to first understand how computers calculate, how calculational errors are introduced, and how
errors propagate.

1. Floating Point Numbers and Machine Numbers

The way computers handle integers is very straight-forward and well-known: an integer is represented
simply by a string of 0’s and 1’s corresponding to the number’s representation in base 2. However, in
scientific analysis, one deals more commonly with the decimal approximations of real numbers. Thus, π is
represented as

π = 3.1459265359 . . .

Computers represent real numbers in terms of a data type known as a floating point number. While the
precise implementation of floating point numbers depending on the binary word length (which depends upon
the architecture and software) of the computer. On a 32-bit system it works like this. A binary floating
point number is parameterized by three binary integers:

x = (−1)s(1.f)2e−127

where s is either 0 or 1, f is a (23-bit) binary integer between 0 and 223 − 1 and e is an (eight-bit) binary
integer between 0 and 28 − 1. Thus, for example

(−4.125)
10

= −

(
22 +2−3

)

= (−1)1(1.00001)22
129−127

= (−1)1(1.00001)22
(010000001−00111111)2

so the binary floating point representation of −4.125 on a 32-bit computer would be the binary string

1 01000000 00001000000000000000000

Now, of course, not every real number can be represented in this form. Not only do we have a limitation in
precision (due to the fact that we allow only 23 bits for precribing decimal places) but since the exponent
total exponent e− 127 must lie between −126 and +127 (the extreme cases when e = 0 or 255 are reserved
for handling 0, infinity and ”not a number” errors).

On a different architecture (e.g. a 64-bit machine) the number of binary digits reserved for the exponent e

and the mantisa e− 127 will be different, and so so will the range of numbers that can be represented in
this fashion. To make this dependence on machine architecture manifest, we usually refer to the binary
floating point representation of a real number x as the machine number corresponding to x.

1

2. ROUNDING ERRORS 2

2. Rounding Errors

We shall now analyze the error introduced in approximating a given real number x by a machine number
fl(x). Let us assume that we’re working on a machine that reserves p bits for the prescription of the
mantissa portion of a binary floating point number. We also assume that

x = q × 2m

where q is a real number greater than or equal to 1 but less then 2, and m is an integer exponent within
the bounds of the machine (except for excluding astronomically huge and infinisimally small numbers, we
haven’t yet made any assumptions about the real number x). Let

q = 1.a1a2 . . . apap+1 . . .

be the binary decimal expansion of q. Now in the machine representation of q we must truncate this decimal
expansion after the pth term. One way to do this is to simply round down by simply chopping off every
digits after the p

th one. Set

q
−

= 1.a1a2 . . . ap

Another way to do this is to round up, by adding 2−p to q
−

:

q+ = 1.a1a2 . . . ap + 2−p

= 1 . a1 . . . ap−1 ap

+ 0 . 0 . . . 0 1

(effectivly increasing the last digit of q
−

by 1). Clearly,

q
−

≤ q ≤ q+

and

|q − q±| ≤ |q+ − q−| = 2−p

Actually, if the machine is smart it will also be able to tell which machine mantissa q− or q+ is actually

closer to x. Let us denote by q
∗ the machine number closest to q. In this case,

|q − q
∗| ≤

1

2
|q+ − q−| = 2−p−1

and so the absolute error in replacing x by the machine number closest to it is

|q × 2m − q
∗ × 2m| = |q − q

∗| × 2m ≤ 2m−p−1

and the corresponding relative error is

|q × 2m − q
∗ × 2m|

|q × 2m|
≤

1

q
2−p−1 ≤ 2−p−1

In summary, if x is a real number and fl(x) is the machine number closest to x then
∣
∣
∣
∣

x− fl(x)

x

∣
∣
∣
∣
≤ 2−p−1

Denoting the relative error (x− fl(x))/x by δ, we can represent this inequality by the following formula

fl(x) = x(1 + δ) , |δ| ≤ 2−p−1

For a machine that uses p binary digits to represent the mantissa of a machine number, the number ε = 2−p−1

that bounds the relative error in converting real numbers to machine numbers is called the unit roundoff

error for the computer.

Example 3.1. Suppose a hypothetical computer uses 8 binary digits to represent the mantissa of a floating
point number. Find the machine number closest to 1.10.

3. FLOATING POINT ERROR ANALYSIS 3

• Using binary long division one can verify that

1.10 = 1 +
1

10
= (1.00011001100110011 . . .)2

Thus, in the floating point representation on the given machine the mantisa is either

q
−

= (1.00011001)2 = (1.09765625000 . . .)
10

or

q+ = q
−

+ (0.00000001)2 = (1.00011010)2 = (1.1015625 . . .)10

We have

|q − q
−

| = (1.1)10 − (1.09765625)10 = (0.00234375000 . . .)10

|q − q+| = (1.1015625)10 − (1.1)10 = (0.001562500 . . .)
10

Since q+ is closest to q we have

fl(1.1) = q+ = (1.000110001)2

3. Floating Point Error Analysis

Let us now explore how rounding errors are propagated in calculations. We shall assume that when a machine
calculates the sum, difference, product, or quotient of two numbers, that it first carries out the operation
with absolute precision, then converts the result to an infinite precision floating point representation and
finally rounds the answer off. Hence, letting � denote any of the arithmetic operators +,−,∗, or ÷, we
have

fl(x� y) = (x� y) (1 + δ) , |δ| ≤ ε

where ε = 2−p−1 is the relative error for computer. In the formula above, we assume that x and y are
known to the computer as machine numbers (as might occur an intermediate stage of a calculation). Of
course, if we start out with real numbers x and y, then they must first be converted into machine numbers.
and so the result of a machine computation would be

fl (fl(x) � fl(y)) = (fl(x)� fl(y)) (1 + δ1) , |δ1| ≤ ε

= (x(1 + δ2) � y(1 + δ3)) (1̄ + δ1) , |δ2| . |δ3| ≤ ε

Example 3.2. Suppose x, y, z are machine numbers on a computer with unit roundoff error 2−p−1. Describe
the error inherent in computing x(y + z).

•

fl (x(y + z)) = (x ∗ fl(y + z)(1 + δ1)) , |δ1| ≤ 2−p−1

= fl [x ∗ fl(y + z)] (1 + δ2)(1 + δ1) , |δ1| , |δ2| ≤ 2−p−1

= fl (x ∗ fl(y + z)) (1 + δ1 + δ2 + δ1δ2) , |δ1| , |δ2| ≤ 2−p−1

≈ fl (x ∗ fl(y + z)) (1 + δ3) , |δ3| ≤ 2−p

In the first step, y + z is computed and then converted into a machine number. The corresponding
relative error in rounding off y + z is signified by δ1. Then the machine number x is multiplied by
the machine number fl(z + z) with corresponding relative error δ2. Finally, the effective relative
error is consolidated in a single term δ3 = δ1 + δ2 + δ1δ2 ≈ O (2−p).

