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ABSTRACT

We present the first comprehensive characterization of the
diffusion of ideas on Twitter, studying more than 5.96 mil-
lion topics that include both popular and less popular to-
pics. On a data set containing approximately 10 million
users and a comprehensive scraping of 196 million tweets,
we perform a rigorous temporal and spatial analysis, investi-
gating the time-evolving properties of the subgraphs formed
by the users discussing each topic. We focus on two diffe-
rent notions of the spatial: the network topology formed by
follower-following links on Twitter, and the geospatial lo-
cation of the users. We investigate the effect of initiators
on the popularity of topics and find that users with a high
number of followers have a strong impact on topic popula-
rity. We deduce that topics become popular when disjoint
clusters of users discussing them begin to merge and form
one giant component that grows to cover a significant frac-
tion of the network. Our geospatial analysis shows that hi-
ghly popular topics are those that cross regional boundaries
aggressively.

Categories and Subject Descriptors

H.2.8 [Database applications]: Data mining; H.3.5 [On-

line Information Services]: Web-based services

Keywords

Online Social Network; Topics; Diffusion; Events

1. INTRODUCTION
In the last decade, the microblogging service Twitter has

attained a massive world-wide following with some estimates
putting the user base at more than 1 Billion users. Nonethe-
less, fundamental questions remain unanswered. We know,
for instance, that discussions around certain topics “go vi-
ral” whereas other topics die an early death. The network
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propagates some ideas, and some make no headway. In view
of the enormous influence of online social networks (OSN),
understanding the mechanics of these systems is critical. To
characterize the properties of popular and non-popular to-
pics is of surpassing importance to our understanding of how
these complex networks are shaping our world.

In this paper we present a large-scale measurement stu-
dy that attempts to describe and explain the processes that
animate microblogging services. We study a large set of po-
pular and non-popular topics derived from a comprehensive
data set of tweets and user information taken from Twitter.
A key strength of our study is that we observe both popu-
lar and not-so-popular topics. This allows us to hypothesize
about the temporal and spatial behavior of popular topics
and support our hypotheses by showing that non-popular
topics display contrary behavior.

The following simple abstraction inspired by the study of
infection spread in networks underlies our work: We view
each topic as a kind of organism that replicates when a user
tweets about it. We study the spread of the topic through
the network, tracking the structure of the infection’s growth,
in the way that epidemiologists do for infections. Drawing
on ideas from the study of epidemiology, complex systems
and statistical mechanics we try to characterize popular and
unpopular topics in terms of their patterns of growth and
decay and provide some hypotheses on what differentiates a
popular topic from an unpopular one. The major difference
between our work and the models of virus spread is that here
an individual tweet may have more than one topic, e.g. a
tweet on Angelina Jolie undergoing a mastectomy may have
topics “Angelina Jolie” and “Breast Cancer” and may lie in
the intersection of the spread of these two topics.

Our work emphasizes the structural aspects of topic spread.
We give the semantic aspect its due importance in the pro-
cess of topic identification, using a laborious manually dri-
ven methodology to ensure that our topics make sense, and
then proceed to study the fundamental temporal and spa-
tial aspects of the spread of topics which is our main focus.
In particular, we study topic movement over two interrela-
ted spatial dimensions: the topology of the Twitter network
as formed by “follower” and “following” relationships, and
the geospatial embedding of that network in the map of the
world.

Our study spans several aspects of spatial diffusion on
Twitter, but our primary focus is on characterizing the tem-
poral and spatial underpinnings of popularity. We focus on
three important aspects as described in the sequel. First, in



Section 4, we study the effect of topology and the dynamics
of topic spread on popularity. The primary objects of study
to this end are the subnetworks formed by users discussing
each topic. While it is known that the Twitter network, li-
ke most large OSN, contains a giant connected component,
a key finding is that the subgraph of users talking about a
popular topic on a particular day always contains a giant
connected component containing most of the nodes (users)
of the subgraph, whereas the subgraphs of non-popular to-
pics tend to be highly disconnected. To summarize, we make
the following observations:

Hypothesis 1. Most of the people talking about a popular
topic on a given day tend to form a large connected
subgraph (giant component) while unpopular topics
are discussed in disconnected clusters.

Hypothesis 1a. The giant component forms when ma-
ny tightly clustered sets of users discussing the topic
merge.

Second, we study the impact of geography on popularity
by partitioning the Twitter network according to regional
divisions and studying the behavior of popular and non-
popular topics.

Hypothesis 2. Popular topics cross regional boundaries
while unpopular topics stay within them.

Finally, we study how topic initiators influence popularity
of the topic, and make the following observations:

Hypothesis 3. Twitter is a partially democratic medium
in the sense that popular topics are generally nourished
by users that have large numbers of followers; however,
for a topic to become popular it must be taken up by
users having scant followers count. Further, regions
with large number of heavily followed users dominate
Twitter.

Since topics last for long times and often witness surges in
activity due to some occurrence in the real world, we iden-
tify events within each topic using a methodology based on
the inter-arrival time of tweets. We use the term event for
these surges and we divide them into five distinct phases.
This allows us to validate our hypotheses in an aggregated
manner by studying our claims within a large set of events
rather than topics which could become popular then fall in
popularity, then rise again within the time window covered
by our data set, thereby skewing our results.
Apart from the highlights mentioned above, we review

related work in Section 2. We describe the various metho-
dological issues that needed to be surmounted to perform
our study in Section 3. Section 8 concludes the paper wi-
th a discussion of the implications of our observations on
different aspect of the OSN sphere.

2. BACKGROUND AND RELATED WORK
Leskovec, Backstrom and Kleinberg’s seminal work on the

evolution of topics in the news sphere was the starting point
for this paper [11]. They studied how the growth of one
topic affects the growth of other topics in the blogosphere.
They identified and tracked a small number of popular th-
reads, and showed that the growth of the number of posts
on a thread negatively impacts the growth of other threads.

The basic question that arose on reading that work was this:
Can the nuances of the temporal evolution of topics be ex-
plained by a more thorough study of their spatial evolution?
Working with a data set taken from Twitter we were able to
extract the high level of structural and geographical infor-
mation about the actors of the process that has allowed us
to answer this question in the affirmative. This allows us to
challenge the line of research that studies only the temporal
evolution of topics [21], or seeks to explain this evolution on
the basis of content [20].

Following the paper cited above there has been more inte-
rest in understanding how information and ideas propagate
on OSNs. A pioneering study on these phenomena on Twit-
ter was conducted by Kwak et. al. [9] where several aspects
of topic diffusion were studied. Of particular relevance to
our work was their study on the topological properties of
retweet trees. Since our data set is built on the data set
they used (cf. Section 3) for details), our work can easily be
compared. Our major contribution is that we work with a
more general notion of a topic and that we work with an eco-
system of topics. Also our work views the diffusion of topics
through the lens of what we call “topic graphs” (cf. Sec-
tion 4), that are a significant generalization of retweet trees.
Retweet cascades have also been studied specifically for the
case of tweets with URLs in them by Galuba et. al. [5] and
by Rodrigues et. al. [14]. There is a line of work that seeks
to uncover the structural processes behind topic diffusion by
studying cascade models (e.g. Ghosh and Lerman [6], Sadi-
kov et. al. [16]) but we feel this is a limited view of the effect
of topology and try to view the network structure in a more
complex way. Myers et al. [13] measure the importance of
external effect in information diffusion in social networks.
By modelling an information diffusion models with external
effects and also doing a large scale measurement analysis on
Twitter they have showed that, around 70% of the informa-
tion volume is due to network effect, while the remaining
30% is governed by the external effects.

In another work, Sousa el al. [17] investigated whether
user interactions on Twitter are based on social ties or on
topics, by tracking replies and message exchange on Twitter;
their study is focused on only three topics namely sports, re-
ligion, and politics. Romero et al. [15] studied topic diffusion
mechanisms on Twitter by focusing on topics identifiable by
hashtags. They study the probability of a topic adoption
based on repeated exposures, and provide quantitative evi-
dence of a contagion phenomenon made more complex than
normal studies of virus-like phenomena by the existence of
multiple topics, and briefly report on the graph structure
of topic networks. More recently, Lehmann et al. [10] study
the dynamics of hashtags in Twitter. They found exogenous
factors more important than endogenous factors to make a
hashtag popular. In another recent work, Weng et al. [19]
analyze how competitive memes diffuse in social network.
They find that the combination of social network structure
and competition for finite user attention is a sufficient con-
dition for the emergence of broad diversity in meme popu-
larity, lifetime, and user activity. They have developed an
agent-based toy model of meme diffusion and compare its
predictions with the empirical data. For the measurement
work they use Twitter data where they consider hashtag
used in the tweets as memes. One major limitation of these
works we found is that only a very small fraction (approx.
10%) of tweets are tagged with hashtags. Our methodology



of using a Natural Language Processor (OpenCalais) allows
us to study topic diffusion on a much larger scale than in
this work since our topic choices are not limited to hash-
tags. In a similar work Asur et al. [1] analyze the trending
topics of the Twitter network. Their work mainly focused
on the temporal evolution of trending topics. Compared to
our work, we have analyzed both popular topics as well as
non-popular topics and also our topics section model is diffe-
rent. In addition to that, we have showed temporal, spatial
and geographical evolution of both popular and non-popular
topics.
On the geographical front, Yardi et al. [22] examine in-

formation spread along the social network and across geo-
graphic regions by analyzing tweets related to two specific
events happening at two different geographic locations. As
an aside we mention that Krishnamurthy et. al. characteri-
zed the geographical properties of the Twitter user base in
2008 [8].
On a more general level, we note that it is implicitly assu-

med that the attention of users on a platform like Twitter is
elastic but bounded (see e.g. [12]) and hence, the diffusion
process is essentially a competitive one, even if it is not ex-
plicitly adversarial. The study of competitive diffusion has
largely revolved around the application domain of viral mar-
keting where there is competition between different produc-
ts [2, 4, 7]. Budak et al. [3] consider the problem of diffusion
of mis-information, where opposing ideas are competing and
propagating in a social network. The study of processes by
which rumor spread may be combated is another example
of competitive diffusion [18]. Our work provides an impor-
tant input into this area of study, articulating the properties
of a complex system that requires extensive study to model
correctly and comprehensively.

3. METHODOLOGY

3.1 Data Set Description
Our primary data set is a snapshot of Twitter activity

over a period of 3 months from June to August 2009. This
snapshot comprises 196 million tweets from 10 million users.
We were able to tag a subset of these tweets with topics via a
manually overseen process that we will explain. Within the
tweets tagged by a single topic we identified “events” using
the inter-arrival time between tweets as a metric to identify
the different phases of an event. We also reverse-mapped
the topic-tagged tweets to a network of follower-following
relationships between the users. The location of these users
was identified where possible. We now discuss each aspect
in greater detail.

The tweets.
Our tweets came from a portion of the ‘tweet7’ data set

crawled by Yang et al. [21] between June and August 2009.

The network.
Follower-following relationship between users were taken

from a data set collected from Twitter during the same time
period by Kwak et. al. [9]. We filled in the gaps by crawling
the profile info of the users who had tweeted in the tweet7
data set but were not present in [9]. Both the in-degree
and out-degree distributions follow a power-law as mentio-
ned in [9]. Most users follow a few people and a few users

Figure 1: In-degree vs Out-degree in the Twitter

network

are followed by a large number of people. We notice that the
in-degree and out-degree values are positively correlated, as
shown in Figure 1 by an overall clustering of points around
the x = y line. In addition, we observe an additional cluster
of points on the top-left quadrant of this graph, which are
users with very large numbers of followers.

Locations.
Using the Twitter User ID available in the tweet7 data

set, we queried Twitter using its API to extract location in-
formation from user profiles. A number of users had their
location specified in latitude and longitude (which is often
done by certain GPS-equipped mobile devices while using
Twitter). We passed this information to the Yahoo! Place-
finder service which resolved it in terms of City, State and
Country. For other users we passed the text in their profi-
le’s “Location” field to Yahoo! Placefinder. In many cases
the service was either unable to resolve the location and in
some other cases it provided a list of possible matches with
associated scores. In the latter case we took the location
with the highest score as the user’s location. The process
was successfully completed for about 60% of the users.

The largest number of users in the data set are from USA
(57.6% users), followed by UK (7.7% users), Brazil (7.1%
users), and Canada (3.7% users). For our geographical topic
diffusion analysis (Section 5) we further sub-divided USA in-
to five commonly acknowledged regions: Northeast (10.7%),
Southeast (13.5%), Midwest (10.4%), Southwest (6.8%), and
West (16%) where each sub-region differs with other sub-
regions in terms of history, traditions, economy, climate, and
geography.

Topics.
Using hashtags to identify topics in tweets has been the

norm in the literature (e.g. [15, 9]), but sparsity is a problem.
In our dataset only 10% of the tweets contain a hashtag. We
took these hashtags as topics but also augmented the topic
set by a laborious combination of automated and manual
intervention. We began by bunching tweets into files of size
40KB and passing it to the OpenCalais text analysis engi-
ne to extract entities, topics, places and other such tags.
On receiving the output we then went back over each tweet
in the bunch and associated OpenCalais’s output tags with
them by simply string matching the tag’s content with the
tweet. Each tweet was allowed to have multiple tags. We
used URLs as topics but we did not follow the URLs to the
respective webpages obtain further topics since that would
be prohibitively expensive. We obtained 48 million topics
for 114 million tweets which includes the topics returned
by OpenCalais, Hashtags and URLs. The remaining twee-



ts were discarded. The popularity distribution of these 48
million topics follows a power-law shape (Figure 2(a)): most
topics are talked by very few users (< 10 users). To make
a manageable set of topics, we exponentially scale down the
set of topics to 5.96M taking care to include both popular
and non-popular topics. Figure 2(b) shows the frequency
distribution of this reduced topic set. We can see in Figu-
re 2(b) that the frequency distribution follows a power-law.
To identify and measure the popularity diversity of topics,
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Figure 2: Frequency distribution of topics.

Figure 3 compare the number of users to the number of
tweets, by plotting those two variables on a scatter plot, for
each of the 5.96M topics. This graph effectively shows the
difference in popularity for all topics. From the graph, we
can see that users of unpopular topics typically tweets more
than one time on that topic. Popular topics on the other
hand, are typically tweeted once by most users. Finally, we

Figure 3: Topic popularity diversity

removed all topics that had been tweeted on by less than 15
users, and then manually examined a sample of 6000 topics
drawn randomly from the 5.96M topics in such a way that
the power-law distribution was maintained (i.e. we sorted
the topics by rank, made uniform sized buckets and picked
a fixed number from each bucket). After merging duplica-
tes and removing nonsensical topics we were left with 4135
topics. A classification of these topics that we will use sepa-
rates them into 3 categories. Popular topics: tweeted on by
at least 10,000 users; Medium popular topics: tweeted on by
at least 1,000 and at most 10,000 users; Non popular topics:
tweeted on by at most 1000 users.

Events.
A topic, typically an identifier for a person, place, object,

brand, occurrence etc. (e.g. IRANELECTION, BARACK
OBAMA, INDIANA, IPHONE), has a lifetime during which
several minor and major happenings cause surges in twee-
ting activity about that topic. We use the term “event” for

such a surge, and focus on the inter-arrival time (IAT) of
tweets to identify these events. Our model on event has a
lifetime that can be partitioned into five divisions according
to Figure 4. The first phase of the event is the pre-event
Phase (t1 to t2) in which initiators introduce the topic into
the network. The second phase of the event is the growth
phase of an event (t2 to t3) in which early adopters talk on
the topic. The third phase of an event (t3 to t4) is the peak
phase in which an “early majority” of people talk on the to-
pic. The fourth phase of an event (t4 to t5) is the decaying
phase in which a “late majority” of people discuss the topic.
The last phase of the event (t5 to t6) is the post-event phase
in which “laggards” talk on the topic. To find events within

Peak-Phase

Decay- PhaseInter-Arrival 

Time

t1     t2               t3                               t4               t5      t6

Time     

Pre-Phase

Growth- Phase

Post-Phase

Figure 4: Phases of an Event

a topic we compute the inter-arrival times (IATs) between
tweets. The sequence of IATs is smoothed using a median
filter. As indicated by Figure 4, the IAT peaks at the end
of an event so we detect the peaks in the smoothed sequen-
ce and demarcate the region between subsequent peaks as
events. A fundamental problem with this method is that it
is sensitive to noise and so it did not yield good results for
topics with less than 100 tweets. As a result we considered
only topics with more than 100 tweets. This constraint re-
duced our set of 4135 manually inspected topics to a very
small number so we had to go back to the 5.96 million unin-
spected topics and choose those topics that had at least 100
tweets in them. These were approximately 8000 in number.
A manual inspection of 1000 of these topics showed that
these were topics that largely made sense.

We classified events into three categories. Popular even-
ts: contained at least 10,000 tweets; Medium popular events:
between 500 and 10,000 tweets; Non-popular events: bet-
ween 100 and 500 tweets. Out of 16492 events detected
93.29% events were non-popular, 6.54% events were medium
popular events and 0.15% events were popular events. As ex-
pected the popular events largely belongs to popular topics
whereas a large proportion of non-popular events belongs to
non-popular topics.

Figure 5(a) shows that the mean inter-arrival time for po-
pular events is two orders lower than that of non-popular
events. For all three events categories, the mean IAT is hi-
ghest when the topic starts, decreases when the topic grows,
and is least when the topic is at the peak. The mean IAT
increase again when the topic goes in event-decay phase and
increase further when the topic goes in post-event phase.

3.2 Three graph structures
A common, and very difficult, question in the study of

diffusion in social network settings is the attribution question
i.e. when a user performs an action, what has caused him or
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her to do so. In a social setting we work with the assumption
that a significant fraction of the actions performed by a user
can be attributed to actions provided by those other users
whose actions the user observes: in the case of Twitter this is
the set of users who he or she follows. In the topic diffusion
setting it is perhaps impossible to construct the true graph of
which tweet was influenced by which other tweet (although
in virus spread it may be possible to determine using DNA
based techniques which organism reproduced to give rise
to a particular organism). Hence, we try to approximate
the process of attribution through two graph structures that
definitely contain this process: First, we study the lifetime
graph of a topic; this is the subgraph induced on the Twitter
network by all the users who have tweeted on that topic at
any time in our window. Secondly, we study the cumulative
evolving graphs of a topic. We denote by Gt

i = (V t

i , E
t

i ), the
cumulative evolving graph for topic t on day i and define it
as follows:

• The vertex set of Gt

0 comprises the users V0 who tweet
about t on day 0. The edge set is empty.

• The vertex set vti of Gt

i is the set of all users who
have tweeted on a topic in days 0 through i. An edge
(u → v) is added to Et

i if u ∈ V t

i−1 and v tweets about
t on day i.

Clearly if user A follows user B and is influenced by a tweet
from user B and tweets on the same topic, this relation-
ship will be contained in both the lifetime graph and the
cumulative evolving graphs.
We also study a snapshot graph, we call it the evolving

graph of a topic. In particular, we partition the tweets re-
lated to a particular topic by day and for each day we con-
struct the subgraph induced on Twitter by the users who
have tweeted on that topic on that particular day.

4. PROPERTIES OF TOPIC GRAPHS
In this section we establish Hypothesis 1 and argue to-

wards Hypothesis 1a.
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Figure 6: Lifetime graphs

4.1 Lifetime Graphs
We constructed lifetime graphs for each of the topic of our

reduced dataset. Our first observation from these graphs is
that popular topics tend to occupy the more well-connected
portions of the network. To establish this we studied the
relationship of the total number of users who have tweeted
on a topic (referred to as the topic user count) to the density
of the lifetime graph of the topic (defined as the number of
edges per user in the graph). In Figure 6a, we note some-
thing important: the lifetime graphs of non-popular topics
(e.g., user count < 1000) do not have densities greater than
10, and in fact many tend to have a density less than 1. A
density of less than one for a subgraph of a reasonably well-
connected graph like the Twitter network clearly indicates
a high number of small isolated clusters. This isolation is
observed even in the lifetime graph which establishes rela-
tionships between users even where they may not exist, for
example, by putting an edge from u to v although v may
have tweeted on the topic before u. Hence, Figure 6a stron-
gly supports one side of Hypothesis 1: less popular topics
generally exist in highly disconnected clusters.

It is difficult to establish the other direction of Hypothesis
1 from lifetime graphs because of the optimistic selection of
edges mentioned earlier. Nonetheless we get strong indicati-
ve evidence for our Hypothesis that a popular topic tends to
be discussed in one large cluster that contains most of the
users that have tweeted on that topic. This evidence comes
from studying the relationship of the topic user count to the
size of the largest connected component of the lifetime gra-
ph, as shown in Figure 6b. From Figure 6b, notice that for
more popular topics there is a clear linear relationship bet-
ween the popularity of the topic and the size of the largest
component of the lifetime graph. This is strongly indicative
of Hypothesis 1, although it cannot be used as conclusive
evidence.

4.2 Evolving Graphs
It is in the study of evolving graphs that we are able to

establish that most users tweeting on popular topics form
one large connected component (we will refer to this large
component as the giant component from now on). For each
topic category–popular, medium popular and non-popular–
we randomly chose 40 topics, and computed evolving graphs
for each. For each day’s graph, we then computed the ratio
between the sizes of the largest and the second largest com-
ponent, and also the ratio between the radii of the largest
and second largest component. In Figure 7(a) and (b), we
present histograms for the ratios of component and radii si-
zes. The buckets divide the ranges of ratios observed for the
size and the radius. We find the median ratio for each topic
and display the percentages of these medians that land in
each bucket. Note that only the highly popular topics po-
pulate the buckets with size ratio greater than sixteen, and
that the median size ratio for these popular topics goes all
the way up into the range of 102 and this is just the median,
the maximum tends to be much higher but we study the
median here because it is a more robust statistic. Most un-
popular topics stay below 4 showing a remarkable evenness
in the distribution of component sizes. The radii ratios simi-
larly show that the width of the reach of the popular topics
comes from the width of one large component rather than
from a large number of small components. This effectively
establishes Hypothesis 1.
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Figure 7: Median value of the ratios

Moving towards Hypothesis 1a, we first clarify in the con-
text of evolving graphs what we mean when we say clusters
merge. If we visualize the social network as a set of com-
munities connected through users who may belong to mul-
tiple communities, our narrative of topic spread says that
topics that are going to become very popular witness inten-
se discussion within communities at first. When the level of
intensity rises then the users who bridge communities enter
the discussion in a big way causing a merging of what were
earlier disjoint discussions. If Hypothesis 1a is correct then
it can be reinterpreted to mean that the bridge users serve
as a barometer of the topics rising popularity. To investigate
the applicability of this narrative we study the conductance
of evolving topic graphs. We define the conductance φ(S) of
a subset of nodes S of a directed graph G = (V,E) as the
ratio of the edges outgoing from the vertices of S that land
outside S:

φ(S) =
|{(u → v) : u ∈ S, v ∈ V \ S}|

|{(u → v) : u ∈ S}|
.

Clearly, the higher the value of φ(S), the more the number of
nodes outside S that are made aware of a topic being tweeted
by the users in the set S. In Figure 8, we plot the evolving
value of the conductance of the user set of the day’s graph
alongside the evolving topic user count for four topics: one
less popular topic “CAMBRIDGE”, one periodically popu-
lar topic “FOLLOWFRIDAY”, and two topics that display
distinct and very high peaks in their popularity “MICHAEL
JACKSON” and “IRANELECTION”. Observing the three
popular topics we notice that conductance is very high ju-
st before the peak is seen. As soon as the peak is formed
the conductance dips down to a low value. This supports
Hypothesis 1a because when the users that bridge distinct
clusters start tweeting on the topic then a larger number of
edges become internal to the day’s topic graph, hence the
conductance should dip as it does. Again, we clarify that
this result is merely indicative of Hypothesis 1a.
There are a number of other interesting artifacts that can

be observed here. The sharp peak in Figure 8(d) comes on
the day of Michael Jackson’s demise. The conductance for
this topic was uniformly high earlier, indicating a steady le-
vel of discussion about Michael Jackson, in tune with his
general popularity. But his death leads to a sharp rise in
tweets about him, causing an immediate dip in the conduc-
tance. After this initial dip the conductance rises again but
no peak comparable to the first one is see, indicating that a
high sustained level of interest in this topic is accompanied
by a high sustained level of disinterest in the followers of
the users continuing to tweet about Michael Jackson. Fi-
gure 8(c) shows a similar initial behavior accompanying an
event, the holding of elections in Iran. Subsequently the-
re is sustained discussion which is more of the nature of a
conversation (the latter part of the “IRANELECTION” tra-
jectory shows an unusually high number of tweets per user
on this topic). This conversation proceeds in regions of the
network that have reasonably high conductance but occasio-
nally show dips in conductance, indicating a higher level of
clustering in the user set, something that might be expected
of a conversation. We note the the similarly high values of
conductance displayed by the topic “CAMBRIDGE” in Fi-
gure 8(a) have a different connotation to the high values seen
in the other graphs because, like most less popular topics,
this too shows highly disconnected daily graphs.

4.3 Cumulative Evolving Graphs
By using a timing relationship to establish edges for the

construction of cumulative evolving graphs, we make them a
better approximation for the spread of a topic than the lifeti-
me graphs we studied in Section 4.1. In Figure 9, we plot the
fraction of nodes in the largest component of the cumulati-
ve evolving graph for two highly popular topics “MICHAEL
JACKSON” and “IRAN ELECTION” and two less popular
topics “SMARTPHONE” and “INDIANA, UNITED STA-
TES”. Note that even at the end of their evolution the two
less popular topics have only 25% and 35% of their users in
the giant component of the cumulative evolving graph whi-
le the two popular topics have half the users in the giant
component even before the time window finishes. This sup-
ports Hypothesis 1 since the cumulative evolving graph is
a better approximation of the spread of a topic. But, more
importantly, the sharp rise in the fraction of nodes in the
giant component that accompanies a peak in the evolution
of the number of tweets stands in support of Hypothesis 1a
because a merging of smaller clusters into one large cluster
would be accompanied by a sharp rise in this fraction. It
could be argued that this rise in the fraction is because of
a sharp growth in the number of users in the largest com-
ponent rather than a merging of clusters, but that seems
unlikely given the extent of the rise, and the large number
of users already present in the cumulative evolving graph at
that point. The less popular topics also show increases in the
fraction when their topic user counts drift upwards, but the
rise is much less dramatic than that shown by the popular
topics, and could possibly be explained by a general growth
in the larger component rather than a radical merging of
smaller clusters.

5. GEOGRAPHICAL ANALYSIS
This section establishes Hypothesis 2. We argue that the

popularity of topics is correlated with their geographical
spread. We begin by simply studying the number of re-
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Figure 8: Evolving graph conductance.
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Figure 10: Users vs regions count.

gions represented by at least one user talking about a topic
and plotted it against the popularity of the topic (see Fi-
gure 10). It is quite clear from this plot that the number
of regions touched by less popular topics is less than those
touched by more popular topics. This plot does not esta-
blish our Hypothesis but it is indicative of it in the sense
that it does not falsify it either. In order to establish the
Hypothesis, we investigated a geographical property of the
cumulative evolving graphs defined in Section 4. For each
topic we determined the fraction of edges in the cumula-
tive evolving graph that went from one region to another;
that is, we studied the fraction of edges (u → v) such that
u belongs to one region and v is a user from another re-
gion. The evolution of this fraction for three topics, one
popular, one medium popular and one non-popular (as de-
fined in Section 3.1) is shown in Figure 11. We observe that
the highly popular topic “BARACK” shows a high fraction
of edges crossing regional boundaries throughout its evolu-
tion, ranging between 0.74 and 0.81. On the other hand the
topic with medium popularity, “CAMBRIDGE”, has a low
fraction of edges crossing regions. It’s noteworthy that an
increase in the popularity of the topic “CAMBRIDGE” is
accompanied by an increase in the fraction of edges cros-
sing regional boundaries. This further supports Hypothesis
2. The topic “HAMBURG”which has low popularity shows
a very small fraction of edges crossing regional boundaries.
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Figure 12: Fraction of edges cross regional

boundaries

We also took 40 topics from each category (as we had done
in Section 4) and computed the mean and median of the
fraction of edges crossing regional boundaries for the entire
period in our window where the topic is tweeted on. We
plotted a histogram using five different ranges for this frac-
tion (see Figure 12). This histogram clearly shows that the
most popular topics tend to have a very large fraction of
edges crossing regional boundaries while the least popular
topics have cumulative graphs that generally evolve within
regional boundaries with small fractions of edges going to
other regions.

6. THE INFLUENCE OF INITIATORS
The sudden rise in importance of Twitter as a global com-

munication medium has made it important to study who are
the entities that wield most influence on this medium. In
this section we make a finding, as stated in Hypothesis 3,
that popular topics are generally nourished by users that
have very high follower counts. These users are usually ei-
ther news media outlets or media personalities (pop stars,
politicians, writers etc.). Finding that the mean number of
followers of a user in our data set’s Twitter network was 65.7
and the standard deviation of this quantity was 1291.7, we
decided to designate any user with more than 3,000 followers
as heavily followed user.

We study the influence of initiators on the number of users
tweeting about a topic on a day with the filtered set of topics
(i.e., those whose first tweet appeared at least 7 days after
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Figure 9: Giant component evolution over time.
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Figure 11: Popularity vs edges crossing geography.
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Figure 13: #followers of initiators versus Users

the beginning of our data set’s time window). In the Twitter
network, there is no rule by which we can find the initiators
of the topics since, apart from explicit retweets, we do not
know when a user is influenced by a tweet. Hence, we use
the following heuristic: we consider the early users (initial
5% of all tweets on a topic) as the initiators of the topic.
Figure 13 (a) shows the relationship between popularity

and the total number of followers of the initiators. Note that

highly popular topics have very high aggregate followers of
the initiators. Figures 13 (b) and (c) show that celebrity
users were indeed involved in initiating highly popular topics
while most unpopular topics were initiated by users with a
low number of followers. However, Figure 13(d) shows that
the average number of followers of the initiators of highly
popular topics is in the hundreds rather than the thousands,
indicating that there are some initiators with relatively small
number of followers involved in these popular topics.

An interesting observation can be made by looking at the
points plotted near the bottom right corner of plots in Fi-
gures 13. These are topics started by a few celebrities that
did not achieve any popularity. Hence, we see that while
it is the case that celebrities drive the popularity of topics,
it is not the case that every topic promoted by celebrities
becomes popular. This helps us establish Hypothesis 3: Ce-
lebrities influence the spread of topics, but cannot make a
topic popular unless common users pick up on them.

We expect that regions containing larger numbers of Twit-
ter users will influence the topics discussed to a greater ex-
tent. To determine this we tabulated the number of topics
for which each region has at least one user in the initiator
set (cf. Figure 14a). We observe that an increase in users
in a given region could potentially lead to an increase in the
share of the topics initiated therein. However, a cautionary
note is struck in Figure 14b which says that the countries
which have large number of heavily followed users initiate
large number of topics. Further, we did not consider all
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Figure 14: Geographical analysis of topics initiated.

topics for this plot, instead focusing on only the top 500
topics (by topic user count) in the filtered set. We see a
kind of continuity with the Hypothesis 3 here. The cultural
and political dominance of certain regions that existed be-
fore Twitter came into being is reflected in the presence of a
greater number of celebrity users in those regions, and con-
sequently translates into a greater impact for those regions
in terms of popular topics.

7. AGGREGATE ANALYSIS USING EVEN-

TS
In section 4 to 6, we have validated the three Hypothesis

using sample of topics. In this section, present an aggregated
analysis performed on events–surges in twitter chatter about
a particular topic–to demonstrate that our hypothesis hold
over a larger set and not just on the sample we presented
earlier. As explained in Section 3.1 we detected 16492 events
from 8250 topics. We have studied the evolving graphs of
these events.
We first buttress the results of Section 4.2 by plotting a

histogram of the ratio of size of largest to the second largest
component of each event (Figure 15). The solid bar denotes
the mean of the ratio and the narrow line in the middle of
the bar shows the extent of one standard deviation around
the mean. We note that popular topics see much larger
ratios of the largest to the second largest component (with
a fairly small standard deviation in the peak phase). For
non-popular topics this ratio does not cross 8 even during the
peak phase. This again validates Hypothesis 1. In Figure 16,
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Figure 15: Largest to 2nd largest component size

ratio

we have shown the mean value of conductance of the three
events classes at various event phases. We observe that for
popular events the conductance dips sharply as we move
towards the peak phase, which is indicative of the merging
we talk about in Hypothesis 1a, and then rises again as
the topic decays, indicating that the graph is again falling
into disconnected components. To validate Hypothesis 2,
we determined the number of regions in which the topic
associated with each event has been discussed. In Figure 17
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Figure 16: Conductance

we see that there is a significant growth in the number of
regions where the topic is discussed as a topic moves into the
peak phase of a popular event, whereas the mean number
of regions remains more or less flat for non-popular events.
The standard deviations of all these values (indicated in thin
lines in the middle of each bar) indicate that the means are
a good estimate of the aggregate behavior.
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8. CONCLUDING REMARKS
The studies we have presented in this paper have wide-

ranging implications, some of which, we hope, will be disco-
vered in the future. For now we present a brief discussion of
those area we feel our results may have an impact on.

Perhaps the most important implication pertains to the
role and impact of highly influential users (and consequently
of highly influential geographies). The rise of OSNs has been
accompanied by a triumphal narrative of democratization of
communication through technology, and while it is true that
Twitter and other OSN platforms have played an important
role in giving voice to individuals who might otherwise find
it difficult to speak to an audience beyond their immediate
geography, our study shows that traditional holders of power
and influence have not been unseated.

Our hypothesis on how a giant component forms on Twitter–
by the merging of smaller tightly clustered sets of users–is
an important input into the sociology of how information is
transacted on a social network. There is reason to believe
that despite the fact that OSN platforms bring the world
closer, older notions of proximity and community continue
to contribute significantly to popularity in the way descri-
bed. Our study is broad in nature and captures a coarse
phenomenon that we hope will excite sociologist and invi-
te them to tease out the finer nuances that lie within such
phenomena.

From an engineering standpoint issues of content distribu-
tion and caching can be addressed from observing that hi-
ghly popular topics cross national boundaries. A closer stu-
dy of which national boundaries are crossed more often than
others could underpin efficient content placement methods.



Our results could also be of great interest to those invol-
ved in using the vast reach of media like Twitter to advertise
their products and services. The notions of trust and repu-
tation inherent in OSNs have been leveraged to a great ex-
tent already for marketing purposes. Our study could help
advertisers and marketers figure out how best to use these
platforms for efficient and well-targeted marketing.
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