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Abstract

We present memory-efficient deterministic algorithms for constructing ε-nets and ε-approximations of streams of ge-
ometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approx-
imation factors. We show how our deterministic samples can be used to answer approximate online iceberg geometric
queries on data streams. We use these techniques to approximate several robust statistics of geometric data streams, in-
cluding Tukey depth, simplicial depth, regression depth, the Thiel-Sen estimator, and the least median of squares. Our
algorithms use only a polylogarithmic amount of memory, provided the desired approximation factors are at least inverse-
polylogarithmic. We also include a lower bound for non-iceberg geometric queries.

1 Introduction

With the proliferation of streams of packets on the Internet, as well as data streaming from embedded systems, digital
monitors, sensor networks, and scientific instruments, there is a need for new algorithms that can compute approximations
or answer approximate queries on data streams. The main challenge in these contexts is that the data volumes are often
much larger than the memory size of a typical computer. Thus, there is a considerable amount of interest in methods that
can process data streams using limited memory (e.g., see recent surveys by Muthukrishnan [34] and Babcock [2]). The
model we choose to work in is the so called Time Series model in which each time instant reveals a new element of the data
stream “signal.”

A typical approach in data streaming algorithms is to maintain a random sample of the input data and perform com-
putations on the sample with the hope that information about the sample can be used to infer properties of the entire set.
Naturally, such inferences come with an associated probability that they are inaccurate. In this paper, we are interested
in deterministically constructing samples of a data stream that have guaranteed approximation properties for the original
set. Moreover, because of the limited memory restriction of data streaming applications, we are interested in deterministic
samples that can be constructed using space that is polylogarithmic in the data stream’s length.

In addition, because much of the streaming data is coming from sensors and scientific instruments, we are interested
in this paper in studying streaming algorithms for geometric data. Such data could include multi-dimensional points in the
color space of astrophysical data or two-dimensional lines defined by a point-line duality of a stream of points in the plane.
Of particular interest, then, is data streaming algorithms for constructing ε-nets and ε-approximations, which are general
structures developed in the computational geometry literature for deterministically sampling geometric data. Indeed, ε-
nets and ε-approximations are developed in a very general context of bounded-dimensional range spaces, where we are
given a ground set and a polynomial-sized family of ranges on that set (which constitute the queries or sampling statistics
we are interested in). Hence, results for constructing such deterministic samples should have a considerable number of
applications.

∗Department of Computer and Information Science, Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11215, USA.
bagchi@cis.poly.edu

†Department of Computer Science and Engineering, Notre Dame University, Notre Dame, IN 46556, USA.Amitabh.Chaudhary.1@nd.edu
‡School of Information and Computer Science. University of California. Irvine, CA 92697-3425, USA. {eppstein,goodrich}@ics.uci.edu

1



1.1 Related work on Streaming Algorithms

Data streaming problems have engendered a large amount of interest among the algorithms community over the last few
years. For a comprehensive survey of the work done so far and some interesting directions for the future, the reader is
referred to Muthukrishnan’s work [34]. An earlier survey by Babcock et. al. [2] explores the issues arising in building data
stream systems.

There has been very little work so far on constructing ε-nets or ε-approximations in streaming models, although these
structures have been extensively studied in full-memory contexts (e.g., see the chapter by Matoušek [33]). The two lines
of research we are aware of are by Suri, Tóth and Zhou [40] and by Brönimann et. al [7, 6]. We will discuss these two in
detail at the end of this section once we lay out the larger context of research in this area.

Apart from the papers mentioned in the previous paragraph the closest previous work is done in the iceberg query [15]
frameworkq. Manku and Motwani [29] provide 1+ε approximations for the frequency counts of items in a data stream that
occur more than εN times (which are the so-called “icebergs”). An alternative approach which requires two passes but uses
less space can be found in [25]. Another set of improved results for determining the top k frequency counts is given in [13].
Algorithms for computing the quantiles of a data stream have been given by Greenwald and Khanna [18] guaranteeing a
precision of εN , which is similar to the guarantees that are provided by ε-approximations, while using O( 1

ε log εN) space.
This limitation of an additive εN error in every quantile is overcome by Gupta and Zane [19]. The latter’s method provides
relative error for all quantiles but uses O(log2 N/ε3) space and requires knowledge of an upper bound on the stream size.

Although the area of geometric property testing has generated interest in algorithms with sublinear time complexity
(see e.g. [8]), the first geometric problem to be studied in the streaming model as we understand it was that of finding
the diameter of a set of points. Feigenbaum, Kannan and Zhang [16] gave an O(1/ε) space algorithm for computing the
diameter of points in two dimensions in the streaming model and a O( 1

ε3/2
· log3 N(log R + log log N + log( 1

ε ))) space
algorithm for computing it in the sliding window model where R is the maximum, over all windows, of the ratio of the
diameter to the distance between the closest two points in the window. Indyk [22] gave a streaming algorithm which
maintains a c-approximate diameter of points in d dimensions using O(dn1/(c2

−1)) space taking O(dn1/(c2
−1)) time per

new point, for c >
√

2.
Cormode and Muthukrishnan generalized the exponential histograms used on single dimensional data sets in earlier

works on streaming algorithms [12, 26] and defined radial histograms [11], which allowed them to give a O(1+ε) approx-
imation to the diameter using O(1/ε) space. They were also able to use these structures to approximate convex hulls in the
sense that no point in the input stream is more than εD outside the approximate hull, where D is the diamter of the point
set. Constructing an approximate hull takes them O(q/ε) space. Hershberger and Suri [21] improve this to give a sampling-
based algorithm for approximating the convex hull of a streaming point set, showing how to maintain an adaptive sample
of at most 2r points such that the distance between the hull of their sample and the true convex hull is O(D/r2), where D
is the current diameter of the sample. Some of the other geometric problems that have been studied in a streaming model
include minimum spanning tree and minimum weight matching [23] and certain facility location and nearest neighbour
kind of queries [11].

As mentioned earlier, the work by Suri et. al. [40], which appeared in the same place as the first version of our
current work [3], is very closely related to our paper. Suri et. al. present an algorithm for answering axis-parallel box
range counting queries using cross products of Greenwald and Khanna’s quantile summaries [18]. They also use Chazelle
and Welzl’s results on matchings with low crossing number [9] to give an algorithm for directly merging and reducing
ε-approximations for axis-aligned box ranges. Their techniques are very interesting, synthesizing many different areas of
research. Their results parallel the ones we provide here although they are presented in a less general setting (and hence
their space and time bounds are slightly better.) The other major advantage of our work over their’s is that our constructions
are deterministic.

Also in the streaming context, Brönnimann and others [7, 6] use ε-approximations for association rule mining in large
databases. They give an algorithm for deterministically computing an ε-approximation on streams of transactions (each of
which is a set of items). This algorithm operates by repeatedly halving the current sample till the approximation bound
required in violated.

1.2 Our Results

In this paper, we present memory-efficient deterministic algorithms for constructing ε-nets and ε-approximations of streams
of geometric data. Our algorithms use a polylogarithmic amount of memory, provided ε is at least inverse-polylogarithmic.
As mentioned above, ε-nets and ε-approximations are of interest in their own right and have many applications in com-
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putational geometry. We show how our deterministic samples can be used to answer online iceberg geometric queries on
data streams, such as in multi-dimensional iceberg range searching. Because the information typically of interest from
data streams is statistical, we focus in this paper primarily on the use of ε-nets and ε-approximations to compute approx-
imations to several robust statistics of geometric data streams, including Tukey depth, simplicial depth, regression depth,
the Thiel-Sen estimator, and the least median of squares. Thus, we additionally give polylogarithmic-space data streaming
algorithms for computing approximations to these statistics. We also include a lower bound for non-iceberg range queries
in data streams.

2 Preliminaries on ε-Nets and ε-Approximations

We recap certain aspects of ε-Nets and ε-approximations [42, 33] which are part of a general framework for modelling a
number of interesting problems in computational geometry and derandomizing divide-and-conquer type algorithms.

A range space is a set system, i.e., a pair Σ = (X,R), where X is a set and R is a set of subsets of X . We call the
elements of R the ranges of Σ, as R is typically defined in terms of some well structured geometry. If Y is a subset of X ,
we denote by R|Y the set system induced by R on Y , i.e., {R ∩ Y |R ∈ R}1.

We say a subset Y ⊆ X is shattered if every possible subset of Y is induced by R, i.e., if R|Y = 2Y . The VC-dimension
of Σ is the maximum size of a shattered subset of X . If there are shattered subsets of any size, then the VC-dimension is
infinite. A related and simpler notion is the scaffold dimension [17] of Σ. It is based on the notion of the shatter function
πR(m), which we define as the maximum possible number of sets in a subsystem of Σ induced by an m-sized subset of X .
In other words, it is the sup{|R|Y | : Y ⊆ X, |Y | = m}. We now define the scaffold dimension of (X,R) as the infimum
of all numbers d such that πR(m) is O(md). It turns out that the shatter function of a set system of VC-dimension d′ is
bounded by

(

m
0

)

+
(

m
1

)

+ · · ·+
(

m
d′

)

= Θ(md′

) [38, 42]. Thus the scaffold dimension is always at most the VC-dimension.
Conversely, if the scaffold dimension is bounded by a constant, the VC-dimension too is bounded by a constant. There are,
however, many natural geometric set systems of scaffold dimension strictly smaller than the VC-dimension; for instance,
the scaffold dimension of a set system defined by halfplanes in the plane is 2, while the VC-dimension is 3. In the rest of
the paper, we will always refer to the scaffold dimension of a set system. In addition, we consider only those set systems
whose scaffold dimensions are bounded by a constant.

We are now ready to define ε-nets and ε-approximations. A subset S ⊆ X is an ε-net for (X,R) provided that
S ∩ R 6= ∅ for every R ∈ R with |R|/|X | > ε. A subset A ⊆ X is an ε-approximation for (X,R) provided that

∣

∣

∣

∣

|A ∩ R|
|A| − |X ∩ R|

|X |

∣

∣

∣

∣

≤ ε (1)

for every set R ∈ R. Note that every ε-approximation is automatically an ε-net, but the converse need not be true. A
remarkable property about set systems of scaffold dimension d is that, for any ε ∈ [0, 1), they admit an ε-approximation
whose size depends only on d and ε, not on the size of X . The first basic result in this vein is the following lemma.

Lemma 2.1 For any set system (X,R), with a finite X , and a scaffold dimension at most d, where d ≥ 1, there exists, for
any ε ∈ [0, 1], an ε-net of size at most C1ε

−1 lg(ε−1), and an ε-approximation of size at most C2ε
−2 lg(ε−1). Here C1, C2

depend on only d.

Note that, in general, the lg(ε−1) factor cannot be removed from the bound.
Matoušek [32] gave a deterministic algorithm for efficiently computing small sized ε-approximations (and thereby, ε-

nets) for set systems with constant-bounded scaffold dimensions. Such an algorithm needs that the set system to be given in
a form more “compact” than simply the listing of the elements in each set. For this we assume the existence of a subsystem
oracle, i.e. an algorithm (depending on the specific geometric application) that, given any subset Y ⊆ X , lists all sets of
R|Y . We say that the subsystem oracle is of dimension at most d if it lists all sets in time O(|Y |d+1). This corresponds to
the scaffold dimension; the maximum number of sets in R|Y is πR(|Y |), and the “+1” in the exponent accounts for the
fact that each output set is given by a list of size up to |Y |. Matoušek’s result is summarized by the following lemma.

Lemma 2.2 Let (X,R) be a set system with a subsystem oracle of dimension d, where d is a constant. Given any
ε ∈ [0, 1), we can compute an ε-approximation of size O(ε−2 lg(ε−1)) and an ε-net of size O(ε−1 lg(ε−1)) in time
O(|X |ε−2d lgd(ε−1)).

1Note that although many sets of R may intersect Y in the same subset, this intersection appears only once in R|Y .
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We shall use the algorithm above as a sub-routine for our streaming algorithm for ε-approximations (see Section 4). It is
based on two observations that we state below. They correspond to two basic operations of our algorithm, the merge step
and the reduce step. Many algorithms for computing ε-approximations (certainly the one Matoušek gave, and the one we
shall give) start by partitioning X into small pieces, and then alternate between the two steps until they get the desired
approximation.

Observation 2.3 (Merge Step) Let X1, . . . , Xm ⊆ X be disjoint subsets of equal cardinality and let Ai be an ε-approxi-
mation of cardinality b for (Xi,R|Xi), i = 1, . . . , m. Then A1∪ . . .∪Am is an ε-approximation for the subsystem induced
by R on Xi ∪ . . . ∪ Xm.

Observation 2.4 (Reduce Step) Let A be an ε-approximation for (X,R) and let A′ be a δ-approximation for (A,R|A).
Then A′ is an (ε + δ)-approximation for (X,R).

Lemma 2.2 can be extended to a weighted case, as in the following result by Matoušek [32].

Lemma 2.5 Let X be a finite set equipped by a probabilistic measure µ (given by a table) and let Σ = (X,R) be a range
space satisfying the assumptions of Lemma 2.2. Then an ε-approximation for Σ with respect to the measure µ can be
computed with the same asymptotic efficiency in the running time and size of the ε-approximation in the case of uniform
measure in Lemma 2.2.

When X is associated with a probabilistic measure µ, an ε-approximation of (X,R) is a multi-set A such that
∣

∣

∣

∣

|A ∩ R|
|A| − µ(X ∩ R)

µ(X)

∣

∣

∣

∣

≤ ε

for every R ∈ R. Though we call µ a probabilistic measure, the result extends to measure in which µ(X) to take values
other than 1; specifically µ(X) can be |X |.

3 Additional Extensions for Weighted Sets

While the extension described above is useful in our context, we nevertheless need some further generalizations, which
will be useful in the data streaming model. In particular, we need to be able to merge ε-approximations of sets of different
cardinalities. To this end we generalize Observations 2.3 and 2.4. To the best of our knowledge, this is the first time such
observations are being made.

Our observations generalize the fact that in the un-weighted case, for an ε-approximation A for (X,R), each element
in A “represents” |X |/|A| elements in X . This is easy to see if we write Requirement (1) in the following form

∣

∣

∣

∣

|A ∩ R| |X |
|A| − |X ∩ R|

∣

∣

∣

∣

≤ ε|X |

In general, an element p in the ε-approximationA need not represent the same number of elements of X as every other
element in A, especially if A has been created by merging two ε-approximationsof sets with different cardinalities. So,
instead of having an element p ∈ A represent |X |/|A| elements, we can assign it a weight γ(p) equal to the number of
elements in X that it represents. In this generalized scenario, a subset A ⊆ X , is a weighted ε-approximation for (X,R)
if

∑

p∈A γ(p) = |X |, and for every R ∈ R,
∣

∣

∣

∣

∣

∣

∑

p∈A∩R

γ(p) − |X ∩ R|

∣

∣

∣

∣

∣

∣

≤ ε|X |

We are now ready to state observations related to weighted merging and weighted in a form that will be of use in the
streaming algorithm.

Observation 3.1 (Weighted Merge Step) Let X1, . . . , Xm ⊆ X be disjoint subsets (of possibly differing cardinalities)
and let Ai be a weighted ε-approximation of (Xi,R|Xi), i = 1, . . . , m. Then A1∪ . . .∪Am is a weighted ε-approximation
for the subsystem induced by R on Xi ∪ . . . ∪ Xm, where the weight γ(p), p ∈ A1 ∪ . . . ∪ Am remains unchanged.
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For the next observation, we define a measure µ(·) as follows: µ(Y ) =
∑

p∈Y γ(p), where γ(p) is the weight of point
p. Recall Lemma 2.5 which talks about computing an ε-approximation for a set equipped with such a measure.

Observation 3.2 (Weighted Reduce Step) Let A be a weighted ε-approximation for (X,R) and let A′ be a δ-approxi-
mation for (A,R|A) with respect to measure µ(·). Then A′ is an (ε + δ)-approximation for (X,R).

4 Computing ε-Approximations in Geometric Streams

In this section we describe an algorithm that takes polylogarithmic space and processing time per object to compute a
compact ε-approximation of a data stream of geometric objects of bounded scaffold dimension, provided ε is at least
inverse polylogarithmic,

Let x1, . . . , xn, . . . be a stream of geometric objects in the time series model with insert only. Let X be the set of all
the objects in the stream that have arrived till now. Let R be a set of ranges defined on X , and Σ = (X,R) be the current
range space. In addition, let d, where d is a constant, be the scaffold dimension of Σ.

We begin by imposing a natural tree hierarchy over the data stream: define a canonical set Sj,k as {xi|j2k ≤ i <
(j + 1)2k} for j, k ≥ 0. Canonical sets are inter-related through a natural tree hierarchy. The children of set Sj,k, k ≥ 1,
are the canonical sets S2j,k−1 and S2j+1,k−1 . We say that a canonical set Sj,k becomes available when the last element in
it, i.e., x(j+1)2k−1, arrives. A maximal canonical set is one that is available but whose parent is not yet available.

Observe that when xn arrives, there are at most lg n maximal canonical sets. Also, the union of all the maximal
canonical sets is the set X of all elements that have arrived till now.

A0,1A0,1

time

Current Output

Current item

Past stream item

Weighted merge

Merge and reduce

Available set

Maximal set

Figure 1: Schematic: Computing an ε-approximation of a data stream

We now outline our streaming algorithm. It simulates the divide-and-conquer approach of the static algorithm in a
bottom up fashion. Interestingly, we do not need to know the value of n in advance.

The algorithm proceeds as follows (see Figure 1): At every stage, the algorithm stores a δ-approximation for all
available maximal canonical sets, where δ varies with the set, but is always at most ε/2. The δ-approximation Aj,k for Sj,k

is constructed through merging the approximations A2j,k−1 and A2j+1,k−1 which were earlier computed for Sj,k’s two
children. Lemma 2.2 states that ε-approximations of the same size can be constructed on two different input sets of the
same cardinality, provided the same εis used for both. Thus, by induction, we can see that A2j,k−1 and A2j+1,k−1 have the
same cardinality, and by Observation 2.3 can be merged. After this merge the ε-approximation is reduced to the required
size.

The ε-approximation of the set X at any point, the stream output, is determined by merging the ε-approximations for
the maximal canonical sets in a weighted manner as given by Observation 3.1. Each element p ∈ Aj,k is assigned a weight
γ(p) = |Sj,k|/|Aj,k| for this purpose.

Formally, we need the following building blocks:

• ε-approx(): An algorithm for deterministically computing ε-approximation of small size (see Lemma 2.2),
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• weighted ε-approx(): An algorithm for computing deterministically ε-approximations of weighted items of small
size (see Lemma 2.5).

Note that we will never use ε-approx() on an input that is larger than logarithmic, as otherwise we will not remain the
space and time bounds that we are aiming for.

Our algorithm, we call it ε-stream approx(), follows the basic merge and reduce technique [33] for constructing
ε-approximations. To follow this technique we need to use a sequence w1, . . . , wu, . . . with the property that W

�
∑∞

u=1 wu = O(1). Here we shall use wi = i−c, for some c > 1.
In Figure 2 we give the fomrmal specification of ε-stream approx(). In reading the specification, assume that Aj,0 is

the element itself in the singleton set Sj,0.

ε-stream approx()
When the next element xn in the stream arrives

For each canonical set Sj,k that becomes available,
taken in the order of increasing k, where k ≥ 1

/* Combine approximations of its children
for the parent */

B ← A2j,k−1 ∪A2j+1,k−1.
/* Reduce the size of the approximation */
Aj,k ← (ε/2 · wk/W )-approximation of B

using ε-approx().
/* Assign weights to elements */
For all p ∈ Aj,k: γ(p)← |Sj,k|/|Aj,k|.

/* Combine approximations of maximal canonical sets
for the stream */

A′ ← � Sj,k is available Aj,k.

Each element in A′ retains its weight from its orginal Aj,k.
/* Reduce the size of the approximation */
A← (ε/2)-approximation of A′ using weighted ε-approx().
Output A.

Figure 2: Algorithm for computing an ε-approximation of a geometric stream.

We are now ready to state our main theorem.

Theorem 4.1 Given an algorithm for computing an ε-approximation of an n-point range space (equipped with a proba-
bilistic measure) of size σ(ε) in time T (n, ε) and taking space S(n, ε), the algorithm ε-stream approx() can compute
an ε-approximation for a stream of objects, of which n have been seen, such that:

1. The size of the approximation is O(σ(ε));

2. The processing time per input object is O(lg n · T (s, O(ε/ lgc n)) + T (lgn · s, ε/2));

3. The space taken is O(lg n · s + S(s, O(ε/ lgc n)) + S(lg n · s, ε/2));

where s = σ(O(ε/ lgc n)), and c > 1 is a constant.

Proof. Observations 2.3 and 2.4 imply that Ai,j is a δ-approximation for Sj,k, where

δ ≤
k

∑

u=1

ε

2
· wu

W
<

ε

2
.

Together with Observation 3.1, this implies that A′ is a weighted (ε/2)-approximation for the set X of elements in the
stream. By Observation 3.2, it now follows that A is an ε-approximation of (X,R). The size of A is O(σ(ε/2)).

The data structure needs to store just the ε-approximations of the maximal canonical sets i.e. the ‘Aj,k’s; all other sets
are intermediate results that can be discarded. Denote the size of largest such set, i.e., Aj,lg n, by s, which is O(σ(ε/ lgc n));
recall that the size is determined by just the last reduction step. The size of the data structure is, therefore, O(lg n · s).
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Consider the space and time requirements for calls to ε-approx() (there can be at most lg n such calls per input object)
and weighted ε-approx() (1 per input object). Note that s is an upper bound for the size of the input to ε-approx(), and
s lg n an upper bound for the size of the input to weighted ε-approx(). Thus, for the calls to ε-approx(), the time required
is O(lg n · T (s, O(ε/ lgc n)), and the space required is S(s, O(ε/ lgc n)). For the call to weighted ε-approx(), the time
required is T (lg n · s, ε/2)), and the space required is S(lg n · s, ε/2)).

ut

The algorithm given by Matoušek [32] (see Lemmas 2.2 and 2.5) has σ(ε) = O(ε−2 lg(ε−1)), T (n, ε) = O(n(ε−2 lg(ε−1))d),
and, we claim, S(n, ε) = O(n +

√
n · (ε−2 lg(ε−1))d). Thus, in effect, we have the following result.

Corollary 4.2 There is an algorithm for computing ε-approximations for a stream of objects, of which n have been seen,
with an associated set of ranges, such that the size of the approximation is O(ε−2 lg(ε−1)), the processing time per object
is O(lg n · sd+1), and the space taken is O(lg n · s + sd+1/2), where s = O(ε−2 · lg2c n(lg lg n + lg(ε−1))), and c > 1 is
a constant.

5 Applications: Robust Statistics

ε-Nets and ε-approximations have a number of applications in computational geometry, and even other areas like learning
theory — see, e.g., [31]. Many of the problems in these have streaming versions. One basic application is range counting.
In this, we are given a set S of n points in � d , and a family R (the ranges) of subsets of � d . Each query consists of a
range R ∈ R and asks for the number of points in it. Typical range families are axes-orthogonal ranges, spherical ranges
(proximity queries), and simplical ranges. The corresponding range spaces for these all have a bounded scaffold dimension.
In the streaming version, the point set S comes as a continuous stream, interspersed with queries. It is easy to see how
our algorithm would work here: use ε-stream approx() to maintain an ε-approximation A of the current (S,R). When
queried with range R ∈ R, output |A∩R| ·n/|A|. This is within an additive εn of the true value; this is akin to the iceberg
queries mentioned earlier.

The above technique has implications in a lot of specific applications. To get a flavor of this, we delve deeper into the
specific area of robust statistic in the next few paragraphs.

Robust statistics concerns the study of statistical estimators that can tolerate high numbers of outliers, while maintaining
an accuracy of estimation that depends only on the remaining uncorrupted data points. In contrast, ordinary least squares
estimators, while trivial to compute even in the streaming model, can be forced to produce estimates that are arbitrarily far
from the correct model even in the presence of a single outlier. The number of outliers that an estimator can tolerate while
preserving its accuracy is called its breakdown point; in general, methods with high breakdown points are preferred but
other criteria are also important including statistical efficiency (number of samples needed to achieve a given accuracy) and
computational efficiency (amount of time it takes to compute a given estimate from a set of samples). Many robust statistical
methods also have the advantage of being non-parametric, not requiring the statistician to produce a prior probability
distribution or other arbitrary parameters before producing a fit. The paradigmatic example of a robust statistic is the
median of one-dimensional data, which, unlike the mean, is robust with a breakdown point of 1

2 . Much research on
streaming algorithms has gone into methods for maintaining approximate medians or more general quantiles [18], and we
would like to find similar methods for higher dimensional statistics.

Two of the critical problems studied in robust statistics are location (finding a central point in a cloud of data points)
and regression (fitting the data to a model in which a dependent variable or variables is a linear function of the independent
variables). Many methods in this area are based on various concepts of depth, which measures the quality of fit of an
estimate. It is natural to seek the estimate maximizing the depth, but it is also of importance to be able to compute depths
of non-optimal estimates, in order to form depth contours that produce a center-outward ordering of the data.

For many of these robust statistical methods, a computationally efficient streaming approximation to the depth measure
can be obtained from an ε-approximation of the sample data. The deepest fit can be approximated by a deepest fit to the
ε-approximation, and this approximate fit often has similar breakdown point properties to the non-approximate fit on which
it is based. We describe below several of the methods to which this technique applies:

5.1 Tukey Depth

This quantity [14] measures the quality of fit of a center, as the minimum proportion of sample points among all halfspaces
that contain the center. The Tukey depth of a point can be computed in time O(nd log n), where n denotes the number
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of sample points [37]. The Tukey median is the point of maximum depth. It is known that any Tukey median has depth
at least 1/(d + 1), and the breakdown point of the Tukey median as an estimate of location is also 1/(d + 1). There are
known static algorithms for finding Tukey medians, or other points of high depth, in two or three dimensions [24, 27, 30],
but in higher dimensions only inefficient linear-programming based exact solutions are known and it is necessary to resort
to more efficient approximation algorithms [10].

The Tukey depth is based on counting points in halfspaces. Hence it can be approximated effectively using ε-approxi-
mations for halfspace ranges [10]: the depth of a point within an ε-approximation of a sample is within an additive error of
ε of its depth in the original sample data. In particular, the Tukey median of an ε-approximation has depth within ε of that
of the true Tukey median. The breakdown point of this approximate Tukey median is 1/(d + 1) − ε. Thus, by using our
streaming ε-approximation algorithm, we can efficiently maintain not only an approximate Tukey median of the data set,
but also a space-efficient data structure from which we can compute accurate approximations of the Tukey depth of any
point.

5.2 Simplicial Depth

This is another measure of quality of fit for location, introduced by Liu [28]. The simplicial depth of a fit point is defined
to be the proportion of simplices, among all the

(

n
d+1

)

simplices formed by convex hulls of (d+1)-tuples of sample points,
that contain the fit point. Equivalently, it is the probability that a randomly chosen (d + 1)-tuple contains the fit point in
its convex hull. As we now argue, for points in the plane, the simplicial depth in a sample set is accurately approximated
by the simplicial depth of an ε-approximation for wedge ranges (that is, ranges formed by intersecting two halfplanes).
Therefore, as for Tukey depth, we can answer approximate depth queries and maintain an approximate deepest point in a
space-efficient manner for streaming data.

Let δ be a value to be determined later and imagine the following process for measuring approximately the simplicial
depth of a fit point: first, let L be a set of 1/δ lines through the fit point, partitioning the plane into 2/δ wedges having the fit
point as a common apex, with at most a δ fraction of the sample points in any wedge. Let e1 be the proportion of triangles,
determined by three input points, that are not all on one side of one of a line in L. Then e1 is an overestimate of the
simplicial depth, but the amount by which it overestimates the depth is O(δ): the only triangles incorrectly included in the
estimate are ones that have two points in opposite wedges, there are O(δ2n3) such triangles per pair of opposite wedges,
and O(1/δ) such pairs. Next, let e2 be the proportion of triangles, determined by three points in an ε-approximation of the
sample, that are not all on one side of a line in L. For the same reasons as before, e2 is within O(δ) of the simplicial depth
for the ε-approximation. Further, e1 and e2 are within O(ε/δ) of each other:

e1 = 1 −
∑

i

(

wi

3

)

+
(

wi

2

)

(hi − wi) + wi

(

hi−wi

2

)

(

n
3

) ,

where wi is the number of sample points in the ith wedge and hi is the number of sample points in the halfplane containing
the ith wedge on its counterclockwise boundary. Each term in the sum is approximated within O(ε) by the corresponding
term where wi and hi are replaced by numbers of points in the ε-approximation, and there are O(1/δ) terms, so the total
difference between e1 and e2 is O(ε/δ). Putting together the errors in going from the original simplicial depth to e1 to
e2 to the simplicial depth of the approximation, and setting δ =

√
ε, we see that the ε-approximation approximates the

simplicial depth to within O(
√

ε).
As far as we are aware, this deterministic ε-approximation based method for approximating simplicial depth is novel

even for static, non-streaming data, although it is trivial to approximate simplicial depth randomly in the static case by sam-
pling triangles. It seems likely that similar deterministic and streaming approximation guarantees, with worse dependence
on ε, can be shown to hold also in higher dimensions.

5.3 Regression Depth

This statistic was introduced by Rousseeuw and Hubert [35] as a measure of the quality of fit of a regression hyperplane.
It is defined as being the minimum proportion of sample points that can be removed to turn the fit plane into a nonfit, that
is, a hyperplane combinatorially equivalent to a vertical hyperplane. Amenta et al. [1] showed that, like Tukey depth, for
regression depth a fit always exists with depth at least 1/(d + 1), and the breakdown point of the maximum-depth fit is
1/(d + 1). Their proof technique shows that the regression depth of a query hyperplane can be measured by performing
a certain projective transformation of the space containing the sample points, and measuring the Tukey depth of a certain
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point in the transformed space. Due to the transformation, a halfspace in the transformed space may correspond to a double
wedge (symmetric difference of two halfspaces) in the original space. Therefore, the same ε-approximation technique used
for Tukey depth, but with double wedge ranges, also applies to regression depth, and lets us compute depths and maintain
an approximate deepest fit with high breakdown point for streaming data. Bern and Eppstein [4] generalized regression
depth to the context of multivariate regression, in which the sample data have more than one dependent variable; in their
definition, the depth of a fit is the minimum proportion of sample data contained in any double wedge, one boundary of
which contains the fit and the other of which is parallel to the dependent coordinate axes; this is again well approximated
by ε-approximations for double wedge ranges.

5.4 The Thiel-Sen Estimator

This estimator [39, 41] is a method for two-dimensional linear regression, in which one first finds the median among all
(

n
2

)

slopes determined by the lines through pairs of sample points, and then selects a regression line having that median slope
and bisecting the sample set. It has a breakdown point of 1 −

√

1/2 ≈ 0.293. This has long been a testbed for geometric
optimization algorithms, and several O(n log n) time static algorithms for it are known, among them one based on using
ε-cuttings in a prune-and-search technique [5]. However these algorithms seem to require repeatedly scanning the data in
a way that is unavailable to a streaming algorithm. Instead, we apply an approximation technique very similar to that for
simplicial depth, above.

To begin with, suppose that we are given a query slope s, and must determine the approximate position of s within
the sorted sequence of slopes, normalized by dividing the position by

(

n
2

)

. This can be solved exactly by a reduction to
computing the number of inversions in a permutation, but we are interested in approximations that can be computed by a
streaming algorithm that does not know s in advance. To do this, let δ be a parameter to be determined later, and imagine
subdividing the sample points into a grid by O(1/δ) lines that are vertical and parallel to s, in such a way that at most a δ
proportion of the points lie in the slab between any two adjacent parallel grid lines. Let e1 be an estimate of the position of
s, formed by summing up the normalized number of pairs of points that form a line with lower slope than s and that are in
a pair of grid cells that are separated both by a vertical line of the grid and by a line parallel to s from the grid. Then e1 is
within O(δ) of the true position of s since the only lines through a given point that are omitted from the count are the ones
where the other point determining the line is in one of the two slabs containing s, and e1 can be expressed as a sum with
O(δ−2) terms, each term being a product of the number of points in two parallelograms. Let e2 be a similar normalized
sum, with the number of sample points in each parallelogram replaced by the number of points of an ε-approximation for
parallelogram ranges, and let e3 be the normalized position of s within the set of lines determined by pairs of points from
the ε-approximation. Then e1 differs from e2 by O(εδ−2) and e2 differs from e3 by O(δ + εδ−1). Therefore, the overall
error caused by using e3 as our approximation to the position of s is O(δ + εδ−2). Setting δ = ε1/3 makes this total error
equal O(ε1/3).

To compute an approximate Thiel-Sen estimator, we use the same ε-approximation for parallelograms. We compute
the median slope among pairs of points from the approximation, and then find a line with that median slope bisecting the
approximation. The resulting line has slope with a normalized position within O(ε1/3) of the median slope, partitions the
sample points within ε of exact bisection, and has a breakdown point of 1 −

√

1/2− O(ε1/3).

5.5 Least Median of Squares (LMS)

These methods [36] in robust statistics seek a fit that minimizes the median residual value separating the fit from the
sample points. This is not a depth-based criterion, but it leads to fits which are highly robust against outliers. For location
problems, the least median of squares fit is the center of the minimum radius sphere that contains at least half of the sample
data [20]. It has a breakdown point of 1

2 : if fewer than half the sample data points are outliers, then the sphere defining the
LMS fit has smaller radius than the circumsphere of the non-outliers, and it contains at least one non-outlier, so its center
must be an accurate fit. Clearly, this is the best breakdown point possible for any location method. The natural type of
ε-approximation to use for this problem is one with balls as its ranges. If we form the LMS fit of such an ε-approximation,
the result may not be robust. Instead, we approximate the LMS fit by finding the center of the minimum radius sphere
that contains at least a 1

2 + ε proportion of the points in the ε-approximation. Such a sphere must therefore contain at least
half of the sample data, and has a radius at least as small as the smallest sphere containing at least a 1

2 + 2ε fraction of the
sample data. It is robust with a breakdown point of 1

2 − 2ε.
The same LMS approach can also be applied to regression problems. The least median of squares regression hyperplane

can be defined as the central hyperplane in a slab bounded by two parallel hyperplanes, with minimum vertical separation
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between them, that contains at least half of the sample data; again this is robust with a breakdown point of 1
2 . As above,

we can use an ε-approximation, with slab ranges, and find the slab with minimum vertical separation containing a 1
2 + ε

fraction of the ε-approximation points, to produce an approximate LMS fit with breakdown point 1
2 − 2ε.

6 A Lower Bound on Range Counting

We provide a simple lower bound on the space required to count approximately the number of items in a range that is not
necessarily an iceberg. When we say that an algorithm f -approximates the range counting problem we mean that if a given
range contains l points, the algorithm gives us an answer which lies between l/f and l · f .

The bound is stated in terms of two-sided ranges: a point (x, y) is said to belong to the two sided range located at (p, q)
if x ≥ p and y ≥ q.

Theorem 6.1 Any f -approximate algorithm to the two-sided range counting problem must use space Ω(n/f 2).

We begin by assuming there is an algorithm A which gives an f approximation to the two-sided range counting problem
for a stream of points in two dimensions. Further we assume that this algorithm uses space o(n/f 2).

Now consider a set of n points which are grouped in n/f 2 equally sized groups, we call them Gi, where 1 ≤ i ≤ n/f2,
in the following way (Figure 3):

ε

ε

i i

G (close up)i

Gi

(x , y )

0 1 2 n

n−1

n

2

1

n−1

Figure 3: Input sequence for the lower bound on approximate range counting

• Each point in Gi has the same x coordinate, we call it xi. For simplicity of presentation assume that all xi values are
integers. Additionally, we require xi > xi−1.

• All the points in Gi have y coordinates closely clustered at a given value, we call it yi. Here too we assume that all
yi values are integers. Formally, for every pj ∈ Gi, we say that 0 ≤ y(pj) − yi < 1/2.

• Every point pj ∈ Gi has y-coordinate strictly smaller than the y-coordinates of all the points in Gi−1.

• Each group i has an additional point qi = (xi + ε, yi + ε), for some ε < 1/2, associated with it.

Note that this family of input sequences has the property that a two-sided query made at (xi, yi) should return a count
of f2 + 1 and one made at (xi + ε

2 , yi + ε
2 ) should return a count of 1. This radical change in the counts will not occur

between two such queries at any point which is not actually (xi, yi) for some value of i. As an extension to this simple
observation, we note that since all the xis and yis are chosen out of the integers 1, 2, . . . n, it is possible to extract the exact
values of all the xi with O(n log n

f2 ) queries by using binary search.
Let us see if the algorithm A can be the query mechanism which we can deploy to this end. Since A is an f approxi-

mation, it should return a value of at most f at (xi + ε
2 , yi + ε

2 ) and a value between f + 1/f and f 3 + f at (xi, yi). This
means that A can indeed act as the oracle which identifies the locations of the groups in our set.
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Hence, using A as a subroutine we can extract θ(n/f 2) information about the input set. This contradicts the assumption
that A uses space o(n/f 2). ut

Seen in the context of streaming algorithms, Theorem 6.1 implies that is not possible to approximate the range counting
problem in polylogarithmic space. One of the implications of this, among others, is that it is not possible to count inversions
in lists [19] in the sliding window model.
Acknowledgments. We would like to thank David Mount for helpful discussions of robust statistics in the context of the
topics of this paper, and S. Muthukrishnan for helpful discussions on geometric streaming algorithms in general.
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[40] S. Suri, C. D. Tóth, and Y. Zhou. Range counting over multidimensional data streams. In Proc. of the 20th ACM
Symposium on Computational Geometry, pages 160–169, Brooklyn, NY, 2004.

[41] H. Thiel. A rank-invariant method of linear and polynomial regression analysis, part 3. Proc. of Koninalijke Neder-
landse Akademie van Weinenschatpen A, 53:1397–1412, 1950.

[42] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their proba-
bilities. Theory Probab. Appl., 16:264–280, 1971.

13


