CSL863: Randomized Algorithms II semester, 2007-08

Homework #1

Due before class on Friday, February 8, 2008

Instructor: Amitabha Bagchi

January 21, 2008

- 1. Find an example of a random variable with a finite jth moment for $1 \le j \le k$ but an unbounded k + 1st moment for some value of k.
- 2. A fixed point of a permutation $\pi : [n] \to [n]$ (where [n] denotes the set $\{1, 2, \ldots, n\}$) is a value j for which $\pi(j) = j$. Find the variance of the number of fixed points of a permutation chosen uniformly at random from all permutations. Use this to upper bound (with high probability) the number of fixed points in a randomly chosen permutation.
- 3. Given a black box that generates integers uniformly at random from k, we give an algorithm for constructing a random permutation of [n]. For each $i \in [n]$, for any $n \leq k$, we determine an f(i) as follows: f(1) is picked at random from [k] using the black box. For f(i), i > 1, pick a random number r from [k] using the black box. If r is distinct from all f(j), j < i, then f(i) = r otherwise pick another random number from [k]. The random permutation is the numbers sorted in the order of increasing f(i).

First show that this algorithm gives a permutation chosen uniformly at random from all permutations. What is the expected number of calls to the black box when k = n, and when k = 2n. Using a Chernoff bound, bound the probability of having to make more than 4n calls to the black box when k = 2n.

4. The randomized quicksort algorithm to sort a set S of n numbers is as follows:

- Pick a pivot i.e. an element r of S uniformly at random.
- Make a pass through S and create sets $S_1 = \{x \in S : x \leq r\}$ and $S_2 = \{x \in S : x > r\}.$
- Recursively sort S_1 and S_2
- Output the sorted version of S_1 followed by r followed by the sorted version of S_2 .

Let us view the execution of Randomized quicksort as forming a tree where the root of each subtree is the pivot chosen for subset contained in that subtree. A node of this tree is called *good* if the pivot element in it divides the subtree rooted at that node into two sets each of size not more than 2/3 of the subset contained in the subtree.

- (a) Show that the expected running time of this algorithm is $O(n \log n)$.
- (b) Show that the number of good nodes in any path from root to leaf in this tree is not greater than $c \log n$ for some constant c.
- (c) Show that with probability at least $1-1/n^2$ the number of nodes in any given root to leaf path is not more than $c' \log n$ for some other constant c'.
- (d) Show that, with high probability, the number of nodes in the longest root to leaf path is no more than $c' \log n$.
- (e) Use these answers to show that the running time of Randomized quicksort is $O(n \log n)$ with high probability.