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8.1 Introduction

In the last lecture, we introduced several useful tools in the build up for an
emulation of an n × n fault-free mesh by an n × n (1 − p)-faulty mesh for
any p > pc with O(logn) slowdown. In this lecture, give the details of the
emulation. This extends the result of [2], described in Lecture 6, which held
only for “small” constant p, and makes it the best possible since for p ≤ pc a
large component does not exist with high probability and so any embedding
would have a ω(1) load.

8.2 Notation

The notation used here will be introduced as needed. For a complete list of
notation used, see Lecture 7. A few general remarks follow. In the follow-
ing, the terms “cluster” and “component” are used interchangeably. p is the
probability of an edge being open, i.e. non-faulty. C(x) is the open compo-
nent containing x ∈ Z

2. 0 denotes the origin of the lattice, i.e. the point
(0, 0). C is shorthand for C(0). χ(p) is the expected size of the component
containing the origin, i.e. χ(p) = Ep(|C|).

8.3 Supporting theorems

We will first prove two useful theorems concerning open paths from left to
right in T (n).

8.3.1 Existence of path connecting left to right face of T (n)

Theorem 8.1 For p > pc, given a box T (n), the probability that there is an
open path joining the left face of T (n) to the right face is at least 1 − ne−σn

for some σ = σ(p) > 0.
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Proof: Let us define two events An and Bn for the lattice L
2 and it’s dual

lattice L
2
d. T

d(n) is the corresponding box in the dual lattice.

• An := There is an open path from left to right face of T (n)

• Bn := There is a closed path from top to bottom face of T d(n)

Note that An and Bn are mutually exclusive and collectively exhaustive,
which can be easily seen in figure 1: If An does not happen, it means that
there should be a cut consisting entirely of closed edges which separates the
left face from the right face, and thus Bn must happen. Conversely, if An
happens, each cut from the left to the right face must contain at least one
open edge and thus Bn cannot happen. This is captured by the following
equation:

P1−p(Bn) + Pp(An) = 1 (1)

An

Bn

(0, 0)

(n, n)

T (n)

T d(n)

x

Ln(x)

Figure 1: Events An, Bn and Ln(x)

We want to lower bound the probability Pp(An), so we can also give an
upper bound to P1−p(Bn). To do this we define the events L(i) for i ∈ S =
{0, 1, . . . , n}, which occur when there is a line from (0, i) which crosses the
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vertical line passing through (n, 0). L(S) occurs if any one of L(i) occurs
(see figure 1).

An implies the existence of a line from the left face of T (n) to the line
passing through (n, 0), so Pp(An) ≤ Pp(Ln(S). Because the line is infinite,
the events are translation-invariant and their probability is the same:

Pp(An) ≤ Pp(Ln(S)) (2)

Pp(An) ≤ n · Pp(Ln(0)) (3)

If there is an open path from the origin 0 crossing the vertical line passing
through (n, 0), it also has to cross the border of the box ϑB(n) somewhere:

Pp(An) ≤ n · Pp(0 ↔ ϑB(n)) (4)

The same argument can be made for the dual symmetrically to get the upper
bound on P1−p(Bn):

P1−p(Bn) ≤ n · P1−p(0d ↔ ϑB(n)) (5)

≤ n · e−σn by Theorem 7.6 (6)

Therefore

Pp(An) ≥ 1 − n · e−σn combine (6) and (1) (7)

However, for the emulation we need multiple paths from the left face to the
right face of T (n). This is shown in the next section.

8.3.2 Existence of multiple paths from left to right face of T (n)

Theorem 8.2 Given p > pc and a box T (n) there exists a constant α so
that the probability that there are at least α ·n open paths joining the left face
T (n) to the right face is at least 1 − e−γn for γ = γ(p) > 0.

Proof: In the proof we need the notion of a sphere around an event. Let Ω
be the set of all outcomes of the bond percolation in L

2. If ω ∈ Ω then we
define Sr(ω) as the sphere of radius r around ω in Ω such that

Sr(ω) = {ω′ ∈ Ω :
∑

e∈E2

|ω(e) − ω′(e)| ≤ r}
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Sr(ω) contains all outcomes which differ from ω in at most r edges. Given
an event A ⊆ Ω, define Ir(A), the r-interior of the event A, as

Ir(A) = {ω ∈ Ω : Sr(ω) ⊆ A}

In other words, Ir(A) contains all outcomes in which up to r edges can be
changed and which still are in A after that.

B(n)

0

Figure 2: B(n) with all edges open

An example may help to understand the definitions: Event A occurs if
the origin 0 is connected to the border of B(n), i.e. A := 0 ↔ ϑB(n). In the
grid displayed in Figure 2, Ir(A) is empty for r ≥ 4, because if the 4 edges
around the origin are closed, A cannot occur. For r = 3, Ir(A) contains at
least the outcome which has all the edges in B(n) open.

We recall Menger’s Theorem to establish the connection between the Ir(An)
and the existence of edge-disjoint paths.

Theorem 8.3 (Menger’s theorem) If A,B ⊆ V (G) have the property
that A↔ B even if up to k−1 edges of G are removed, then there are k edge
disjoint paths in G from A to B.

Let us look at the event Ir(An), where An occurs, if there is a path from the
left edge to the right edge in B(n). All outcomes in Ir(An) are resistant to
r edge removals, so according to Theorem 8.3, there are r + 1 edge disjoint
paths from the left side to the right side. Now we only have to show that the
probability of Ir(An) for r = αn, where α > 0 is some small enough constant,
approaches 1 as n→ ∞.

To do this we use following Theorem 8.4 (proof omitted) to show that
the probability of the complementary event approaches 0 as n→ ∞. For the
definition of increasing event, see Lecture 7.
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Theorem 8.4 [1] For an increasing event A and an integer r

1 − Pp2(Ir(A)) ≤
(

p2

p2 − p1

)r

(1 − Pp1(A))

whenever 0 ≤ p1 < p2 ≤ 1

In the above theorem set A = An and pc < p1 < p2 = p. Then

1 − Pp2(Ir(An)) ≤
(

p2

p2 − p1

)r

(1 − Pp1(An))

=

(
p2

p2 − p1

)r

· Pp1(Bn) by (1)

≤
(

p2

p2 − p1

)r

· ne−σ(p1)n by Theorem 8.1

≤ e
log

“

p2
p2−p1

”r

+logn+log e−σ(p1)n

= ne
r log

p2
p2−p1

−σ(p1)n

If we set r = αn we get

= ne
(−σ(p1)+α log

p2
p2−p1

)n

By choosing α appropriately, the exponent can be made negative. The lead-
ing factor n in (8) can be ignored because it will be dominated by the rapidly
decaying exponential, so:

1 − Pp(Iαn(An)) ≤ ne−λ(p)n
︸ ︷︷ ︸

→0 for n→∞

(8)

with λ(p) > 0.

8.4 Inapplicability of the “highway” construction

In the previous section we showed that there exist αn paths joining the left
and right face of T (n) w.h.p. But is this enough? We recall the “highway”
construction of Kaklamanis et. al.

In this construction we tiled the n× n grid with r× r grid-like blocks. If
each grid had at least 2

3
r paths from left to right, then we can construct at

least 1
3
r paths from the left side to the right side of T (n). For full details of

the construction, see Lecture 6 or [2].
But Theorem 8.2 does not guarantee α ≥ 2

3
. Thus we cannot use the con-

struction described above directly. We instead use a different tiling strategy.
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8.5 A “domino” tiling strategy

Define the box T (l, kl) as the box with lower left corner at (0, 0), height l
and width kl. We define the following event for some α > 0:

LR(l, kl) : The left and right face of T (l, kl) are connected

LR(l, l)

3
2
l

3
2
l

1 2 3 4

LR(l, 3
2
l)

LR(l, 3
2
l)

Figure 3: Events LR(l1, l2)

The dominoes are of size T (l, 3
2
l) and are nested as displayed in Figure 3.

Then we have the following relation:

Lemma 8.1 [4]

Pp(LR(l, 2l)) ≥ Pp(LR(l, l)) · Pp(LR(l, 3
2
l))2

Proof: See Figure 3 for the basic idea of the proof. If we have a path from
face 1 to face 3 and a path from face 2 to face 4, we can use the vertical
path in the common area to connect up the paths. Since all the three events
are increasing events, we can use the FKG inequality, which yields the result
immediately.
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We also have the following bound on Pp(LR(l, 3
2
l)) in terms of Pp(LR(l, l))

(which we know). The proof is omitted.

Theorem 8.5 [4], [5] For τ = Pp(LR(l, l))

Pp(LR(l, 3
2
l)) ≥ (1 −

√
1 − τ)3

.

In the above theorem, set τ = (1 − e−γ(p)l) and use Lemma 8.1

Pp(LR(l, 2l)) ≥ τ · Pp(LR(l, 3
2
l))2 τ in (8.1)

≥ (1 − e−β(p)l) · Pp(LR(l, 3
2
l))2 by Theorem 8.2

≥ (1 − e−β(p)l) · (1 − e
−β(p)

2
l)2·3 by Theorem 8.5

≥ (1 − e−β(p)l)7

if we leave out the positive terms in the sum, we get

Pp(LR(l, 2l)) ≥ 1 − 7e−β(p)l

for large l you can find a constant ψ(p) > 0, so that

Pp(LR(l, 2l)) ≥ 1 − e−ψ(p)l

With the same argument as in the proof for Theorem 8.2 we can argue that
there must exist some α and an appropriate η(p), so that:

Pp(Iαl(LR(l, 2l))) ≥ 1 − e−η(p)l (9)

In the above, set l = 3 logn
η(p)

(the size of the “dominoes”) to get the result that

with probability at least 1−O( 1
n3 ) we have a “good domino”, i.e. a domino

which has open paths from the left face to the right face of the domino, which
can be tiled together to yield open paths from the left face to the right face

of T (n). Since there are only O
((

n
logn

)2
)

dominoes, the probability that

they are all “good” is at least 1 −O( 1
n
). Thus we have shown the following

theorem:

Theorem 8.6 [3] For any p > pc it is possible to emulate a n× n mesh by
an n× n (1− p) - faulty mesh with O(l+C +D) slowdown where l = O(1),
C = O(1) and D = O(logn).
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