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7.1 Introduction

From percolation theory we know that there exists a probability pc such that
∀p > pc, there exists an infinite component in an infinite mesh and a θ(n2)
component in a n × n mesh with high probability. We saw the Kaklamanis
result [2] in the previous lecture, which states that ∃p′ : for all p > p′, a n×n

mesh can emulate a fault-free n
√

log 1
p

n × n
√

log 1
p
n mesh with O(log 1

p
n)

slowdown, where p′ ≥ pc. We will prove in the following lectures that it is
possible to get a similar emulation with O(log n) slowdown, for all p > pc.
Note p in the last lecture was the fault probability, here it refers to the
probability of existence of edge.

In this lecture we will prove that critical probability pc for infinite mesh
is 1/2. This result will be used in subsequent lectures for proving that an
emulation with O(log n) slowdown can be done for all p > pc.

7.2 Notations and Definitions

In percolation theory, each edge in a graph is open with probability p, or
closed with probability 1 − p. Each edge is open or closed independent of
other edges.

7.2.1 2-D Lattice

We represent a 2-dimensional lattice on integer point as L
2 = (Z2, E2). Z

2

denotes the set of 2-dimensional integer points. E
2 denotes the set of edges

and is defined as follows:

E
2 = {(x, y) : x, y ∈ Z

2,
2∑

i=1

|xi − yi| = 1}
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The percolated lattice is formed when every edge is this lattice exists with
probability p. Now for every edge e ∈ E

2 we define a random variable Xe as
follows,

Pe (Xe = 1) = p (e is open)

Pe (Xe = 0) = 1 − p (e is closed)

Note that the random variables Xe are independent. i.e the probability
of an edge e1 being open, is independent of the probability of another edge
e2 being open.

Now, we define the product measure of L
2 as follows,

P =
∏

e∈E2

Pe

We also define an outcome vector ω in which the ith entry, ω(i), is set
1 if the edge ei is open and 0 if it is closed. Since, L

2 is an infinite mesh,
there are an infinite no. of edges and, therefore, there are infinite entries in
ω. Hence, the probability of any outcome is a 0 measure.

Lets define Ω to be the set of all outcome vectors.
We can define a partial order (a transitive, antisymmetric and reflexive

relation) on Ω as follows,
For ω1, ω2 ∈ Ω, we say that ω1 ≤ ω2, if

∀e ∈ E
2, ω1(e) ≤ ω2(e)

i.e. Every edge that is open in ω1, is also open in ω2.

7.2.2 General Notation

1. Pp(A): Probability of an event A occurring, where each edge is open
(edge exists) with probability p.

2. ∂S: Denotes boundary of set S. We can see that ∂S ⊆ S.

3. C(x): Denotes the open component containing x ∈ Z
2. By an open

component we mean a connected component formed from open edges,
and for convenience C(0) is denoted as C, where 0 is the origin.
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4. x ↔ y: Denotes the event that x is connected to y through a sequence
of open edges.

5. {A}: Denotes set of outcomes in which event A happens.

6. χ(p): It is defined as the expected size of cluster (or component)
containing the origin 0 when each edge is open with probability p,
χ(p) = Ep(|C|)

∂B(n)

(-n,-n)

(n,n)

O

B(n)

Figure 1: Bounding box B(n) with boundary ∂B(n)

7.2.3 Increasing/Decreasing events

Definition A random variable X : Ω → R is called increasing (or decreasing)
if X(ω1) ≤ X(ω2), whenever ω1 ≤ ω2 (or ω1 ≥ ω2).

Define B(n) as the bounding box as shown in Figure 1.

Example Increasing random variable

• X : No. of open edges in B(n).

Example Decreasing random variable
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• X : No. of closed edges in B(n).

An indicator variable for an event A is defined as follows,

IA =

{
1 if A happens
0 if A doesn’t happen

Definition An event A is called increasing (or decreasing) if its indicator
variable IA is increasing (or decreasing).

Example Consider the event B : There are even no. of open edges in B(n).

We can’t call B either an increasing or a decreasing event.

7.2.4 A ◦ B

Definition Given increasing events A and B, A ◦B is the event that A and
B “happen on disjoint sets of edges.”

Formally this is stated as follows,
Given ω ∈ Ω, K(ω) = {e : ω(e) = 1}, we say that ω ∈ A ◦ B, if ∃ ω1, ω2

s.t.

• ω1 ∈ A, ω2 ∈ B

• K(ω1) ∩ K(ω2) = ∅

• K(ω1) ∪ K(ω2) ⊆ K(ω)

Note that A ◦ B ⊆ A ∩ B. This follows from the observation that A ∩ B
also includes those outcomes in which both A and B happen on overlapping
edges.

∴ P(A ◦ B) ≤ P(A ∩ B)
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7.3 Basic tools from probability theory

Theorem 7.1 For an increasing event A and p1 ≤ p2 ≤ 1

Pp1
(A) ≤ Pp2

(A)

Proof. Suppose two different experiments are being performed. In Ex-
periment 1 (Ex1) each edge is being retained with probability p1 and with
probability p2 in Experiment 2 (Ex2). We proceed to show that whenever
event A happens in Ex1 it also happens in Ex2. We prove this by relating
the two experiments using a technique called coupling which is done as fol-
lows: ∀e ∈ E

2 we associate a random variable Ye ∈ [0,1]. Then we proceed
as follows,

• Declare e open in Ex1, if Ye < p1

• Declare e open in Ex2, if Ye < p2

And since p1 ≤ p2, whenever an edge e is open in Ex1 then it is open in Ex2

also. Since A is an increasing event if it happens in Ex1, it will also happen
in Ex2. Hence the theorem is proved.

Note that P(Ye < p1) = p1 and P(Ye < p2) = p2. So we are still retaining
edges in the two experiments with their respective probabilities.

Theorem 7.2 FKG inequality: Given increasing events A and B,

P(A ∩ B) ≥ P(A)P(B)

We must note that if A and B were both decreasing events (A and B are
still positively correlated), even then the above inequality would hold.

Similarly, if A and B are negatively correlated then the inequality would
get reversed.

Example Consider B(n) as shown in Figure 1.

Let A be the event that an open path exists from left to right in B(n) and
B the event that an open path exists from top to down in B(n).

Both A and B are increasing events. By intuition, we can see that if B
happens, i.e. a path exists from top to down then the probability that A
happens can only improve. Hence, we see that the FKG Inequality holds,
i.e. A and B are positively correlated.
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Theorem 7.3 BK inequality: Given increasing events A and B

P(A ◦ B) ≤ P(A)P(B)

For further details regarding the above inequalities, one can refer [1].

Lemma 7.1 (Square root trick) Given a set of increasing events A1, . . .,
Am of equal probability.

Pp (A1) ≥ 1 −

{

1 − Pp

(
m⋃

i=1

Ai

)} 1
m

Proof. Probability that none of the events Ai occurs can be given as,

1 − Pp

(
m⋃

i=1

Ai

)

= Pp

(
m⋂

i=1

Āi

)

≥
m∏

i=1

Pp

(
Āi

)
(Using FKG Inequality)

= (1 − Pp (A1))
m (Since Ai’s are of equal probability)

∴ 1 − Pp

(
m⋃

i=1

Ai

)

≥ (1 − Pp (A1))
m

⇒

{

1 − Pp

(
m⋃

i=1

Ai

)} 1
m

≥ 1 − Pp (A1)

⇒ 1 −

{

1 − Pp

(
m⋃

i=1

Ai

)} 1
m

≤ Pp (A1)

Hence, proved.

7.4 Critical probability for percolation in 2-dimensions

Now, let us define the critical probability of a mesh pc in terms of the above
notations.

If p ≤ pc, Pp (|C| > k) → 0 as k → ∞
i.e. If the probability of an edge being open p is less than or equal to the

critical probability pc, then the probability of finding an infinite sized open
cluster, containing the origin, is 0.
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Theorem 7.4 If p ≤ pc, then χ(p) < ∞

Theorem 7.5 If χ(p) < ∞, there exists σ(p) > 0 s.t.

Pp (0 ↔ ∂B(n)) ≤ e−nσ(p)

Note that σ(p) is independent of n. The term on the left of the inequality
represents the probability that an open path exists from the origin to ∂B(n).
This probability must increase as p increases. Therefore, we expect that σ(p)
should decrease as p increases, which is indeed the case.
Proof. Define a random variable Nn as the no. of nodes of ∂B(n) to which
the origin is connected through open paths.

For x ∈ ∂B(n), τp(0, x) = Pp (0 ↔ x)

∂B(m)

∂B(m + k)

(m,m)

(m+k,m+k)

x

O

Figure 2: A path from origin to ∂B(m + k)

We can see that,

{0 ↔ ∂B(m + k)} ⊆
⋃

x∈∂B(m)

(0 ↔ x) ◦ (x ↔ ∂B(k, x))

Consider any path from the origin to the boundary of B(m + k), see
Figure 2. It must have intersected the boundary of B(m) at some node.
Lets choose that x which corresponds to the last node which is intersected
on ∂B(m). Lets define ∂B(k, x) as the boundary of the box of side length
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∂B(k, x)

x

O

Figure 3: B(k,x), Box of size k around x

2k centered at node x, see Figure 3. Also, since there is a path from this
x to ∂B(m + k), there must be a path from x to ∂B(k, x). Since, we chose
x to be the last node to be intersected on ∂B(m), 0 ↔ x & x ↔ ∂B(k, x)
occur on a disjoint set of edges. But not all paths on the RHS correspond to
a path that reaches ∂B(m + k). Hence, the LHS is a subset of the RHS.

From this we get,

Pp (0 ↔ ∂B(m + k)) ≤
∑

x∈∂B(m)

Pp ((0 ↔ x) ◦ (x ↔ ∂B(k, x))

≤
∑

x∈∂B(m)

Pp (0 ↔ x) .Pp (x ↔ ∂B(k, x)) (Using BK inequality)

=
∑

x∈∂B(m)

τp(0, x).Pp (x ↔ ∂B(k, x))

From the translational invariance property ∀x ∈ Z
2, Pp (x ↔ ∂B(k, x)) =

Pp (0 ↔ ∂B(k)). Using this we get,

Pp (0 ↔ ∂B(m + k)) ≤
∑

x∈∂B(m)

τp(0, x).Pp (0 ↔ ∂B(k))
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∴ Pp (0 ↔ ∂B(m + k)) ≤ Pp (0 ↔ ∂B(k)) .




∑

x∈∂B(m)

τp(0, x)



 (1)

Now, lets define the no. of nodes on the boundary of ∂B(m) which have
an open path which connects them to the origin by Nm.

i.e. Nm =
∑

x∈∂B(m)

I0↔x, where

I0↔x =

{
1 if 0 ↔ x
0 otherwise

∴ Ep (Nm) =
∑

x∈∂B(m)

τp(0, x) (2)

Substituting (2) into (1) gives us,

Pp (0 ↔ ∂B(m + k)) ≤ Pp (0 ↔ ∂B(k)) .Ep (Nm) (3)

Let’s say we get an m∗ s.t. Ep (Nm) < 1. We will show that the theorem
holds if we do find such an m∗. Then we will show that such an m∗ actually
does exist.

Suppose, n = s.m∗ + r, where s ≥ 0 & 0 ≤ r < m∗. Then using (3) we
get,

Pp (0 ↔ ∂B(n)) ≤ Pp (0 ↔ ∂B(n − m∗)) .Ep (Nm∗)

≤ Pp (0 ↔ ∂B(n − 2m∗)) . (Ep (Nm∗))2

...

≤ Pp (0 ↔ ∂B(r)) . (Ep (Nm∗))s

≤ (Ep (Nm∗))s

≤ (Ep (Nm∗))(
n

m∗
−1) ( ∵ Ep (Nm∗) < 1)

= elog(Ep(Nm∗ ))( n
m∗

−1)

≤ elog(Ep(Nm∗ ))( n
2m∗ ) ( ∵ Ep (Nm∗) < 1)

= e

−

2

6

6

6

4

log

0

@

1

Ep(Nm∗ )

1

A

2m∗
.n

3

7

7

7

5
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Set σ(p) =
log

 

1

Ep(Nm∗ )

!

2m∗
, which is independent of n and decreases with

increase in p
∴ Pp (0 ↔ ∂B(n)) ≤ e−σ(p).n

But, now we need to find an m∗ s.t. Ep (Nm∗) < 1.

We can see that |C| =

∞∑

n=0

Nn. This is easy to visualize as each node in C

will lie on the boundary of some bounding box B(n) and will be connected
to the origin.

∴ χ(p) = Ep (|C|) =

∞∑

n=0

Ep (Nn)

⇒
∞∑

n=0

Ep (Nn) < ∞ (Using Theorem 7.4)

⇒ lim
n→∞

Ep (Nn) → 0

⇒ ∃m∗ s.t. Ep (Nm∗) < 1
This follows from the fact that if the infinite sequence tends to 0, at some

point we will definitely find a value less than 1.
Hence, the theorem is proved.

Theorem 7.6 If p > pc, then there exists a unique infinite cluster.

Refer [1] for proof.

7.5 The critical probability is 1

2

Now we have the necessary tools to prove Harry Kesten’s famous theorem
on the critical probability for bond percolation in two dimensions.

Theorem 7.7 [3] The critical probability pc of bond percolation in a 2-
dimensional lattice L

2 is 1
2
.

To show this we will first prove that pc ≥
1
2

and then that pc ≤
1
2
.

7.5.1 First part: Show that pc ≥
1
2

Lemma 7.2 pc ≥
1
2
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Ar(n)

Ab(n)

(n, n)

At(n)

Al(n)

(0, 0)

T (n)

∞

∞

∞

∞

Figure 4: The events Ar(n), At(n), Al(n), Ab(n)

Proof: Let θ(p) be the probability that the origin is part of an infinite
component. We will show that θ(1

2
) = 0. Since pc = sup{p | θ(p) = 0}, this

is the same as saying that pc ≥
1
2
.

Consider the box T (n) with corners at (0, 0) and (n, n). Let Ar(n) be
the event that there exists an open path that starts at the right boundary
of T (n), doesn’t go inside the box and goes to infinity. Define similar events
At(n), Ab(n), Al(n) for the top, bottom and the left boundaries of T (n) re-
spectively (see Figure 4). Let J be the index set {l, r, t, b}.

Note that if T (n) intersects the infinite cluster, then the event
⋃

j∈J Aj(n)

must occur. This means that for p = 1
2

Pp(T (n) intersects the ∞−cluster) ≤ Pp(
⋃

j∈J

Aj(n) happens)

We can check that as n → ∞, the term on the left hand side → 1. Also,
note that the probability of all the four events is the same. Using the square
root trick (Lemma 7.1), for any j ∈ J :
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Pp(Aj) ≥ 1 − (1 − Pp

(⋃

Aj

)

︸ ︷︷ ︸

→1 for n→∞
︸ ︷︷ ︸

→0 for n→∞

)
1
4

︸ ︷︷ ︸

→1 for n→∞

(4)

With increasing n we can get Pp(Ax) arbitrarily close to 1, so there exists an
N ′ with P 1

2
(Ax(N

′)) > 7
8
.

We now work with the dual lattice. Define Ad
j (n), j ∈ J for the closed

paths in the dual lattice similarly. Since p = 1
2
, 1 − p is the same as p

and since the dual of the lattice is the lattice itself, the same argument can
be used to show that there exists a number N ′′ such that Pp(A

d
j (N

′′)) =
P1−p(A

d
j (N

′′)) > 7
8
. We proceed with the bigger constant N = max(N ′, N ′′).

Al(N)

∞

(0, 0)

∞
Ad

t (N)

Ar(N)

∞

Ad
b(N)

∞

(n, n)

Figure 5: The event A

Now our goal is to define an event that would require the two components
to intersect. Let A = Al(N) ∩ Ar(N) ∩ Ad

t (N) ∩ Ad
b(N) be this event, which

states that there is an infinite open path originating at the left and at the
right edge in the primal and an infinite closed path originating at the top
and at the bottom edge in the dual lattice (see Figure 5). To determine the
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probability of A we give an upper bound to the complementary event A:

A = Al(N) ∪ Ar(N) ∪ Ad
t (N) ∪ Ad

b(N)

P(A) ≤ P(Al(N)) + P(Ar(N)) + P(Ad
t (N)) + P(Ad

b(N))

P(A) ≤
1

8
+

1

8
+

1

8
+

1

8

P(A) ≥
1

2

Because P(A) is positive, there is a possible outcome which leads to the
contradiction. This can be seen as follows. Denote the paths corresponding
to Aj(n), j ∈ J as Pj(n). Define P d

j (n) similarly for the dual lattice. Since
the ∞-component is unique (see Theorem 7.6), one of the following two cases
must occur:
Case 1: PL(N) and PR(N) meet outside the box. Since these paths are
always outside T (N), they must intersect the paths corresponding to either
Ad

T (N) or Ad
B(N). But this is not possible since an edge is either open or

closed.
Case 2: There should be an open path inside T (N) connecting PL(N) and
PR(N). This means that there are two infinite components in the dual lattice
(the paths corresponding to Ad

T (N) and Ad
B(N)), which is again not possible.

By contradiction, we have shown that θ(1
2
) = 0 =⇒ pc ≥

1
2
.

7.5.2 Second part: Show that pc ≤
1
2

To prove the other half of Theorem 7.7, we first need this lemma.

Lemma 7.3 If p < pc, then

Pp(origin of L
2
d is part of an ∞-component of closed edges) > 0

Let us assume that Lemma 7.3 is true. We prove the following:

Lemma 7.4 pc ≤
1
2
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Proof: Lemma 7.3 says that

p < pc =⇒ θ(1 − p) > 0 (5)

or p < pc =⇒ 1 − p > pc (6)

The above can only hold if pc ≤ 1
2
. To see this, suppose the converse

holds, i.e. pc = 1
2

+ ǫ. Then for p = 1
2

+ ǫ/2, Equation (6) is false. Thus we
have shown by contradiction that pc ≤

1
2
.

To complete the proof of Theorem 7.7, we now prove Lemma 7.3.

Proof: For a given M > 0 and k ≤ 0, we define the event AM as follows
(see Figure 6). Event AM occurs if (k, 0) ↔ (l, 0) for some l > M through
an open path which lies wholly above the X-axis.

(k, 0) (l, 0)

k < 0 AM

l > M

Figure 6: The event AM

Pp(AM) ≤ Pp(
∞⋃

l=M

{(l, 0) ↔ (k, 0)})

≤
∞∑

l=M

Pp(|C(k, 0)| ≥ l)

=

∞∑

l=M

Pp(|C| ≥ l)
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Note that the last sum is the tail of the series:

∞∑

l=1

Pp(|C| ≥ l)

=

∞∑

l=1

l · Pp(|C| = l)

= χ(p)

< ∞

The last inequality follows from the fact that p < pc =⇒ χ(p) < ∞ (see
Theorem 7.4). The sum converges, and all terms are ≥ 0. So the terms must
decrease, as l increases. This means we can leave out terms, i.e. find a M∗

so that Pp(AM∗) < 1
2

=⇒ Pp(AM∗) > 1
2
.

We now use an argument also used in lecture 1: A finite component of closed
edges in the dual lattice must be surrounded by a circuit of open edges in the
primal lattice. Consider the set L = {(m + 1

2
, 1

2
) | 0 ≤ m < M∗} in the dual

lattice. Let Cd(L) be the set of vertices connected to L through closed edges.
If Cd(L) is finite, then in the dual of the dual lattice (i.e. the primal lattice),
there exists a closed cycle enclosing Cd(L). Note that the upper part of the
circuit connects the negative part of the X-axis to some (l, 0) where l > M∗.
This means that AM∗ must happen (see Figure 7)

Cycle in primal lattice enclosing Cd(L)

Cd(L)
(l, 0)(k, 0)

Figure 7: Cd(L) enclosed by an open cycle
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P(|Cd(L)| < ∞) ≤ Pp(AM∗) < 1
2

=⇒ P(|Cd(L)| = ∞) > 1
2

Using pigeon hole principle we can argue that if the probability for M∗ ver-
tices is > 1

2
, then the probability of at least one vertex must be above the

average, i.e.:

=⇒ P(∃x ∈ L s.t. |Cd(x)| = ∞) >
1

2 M∗

=⇒ P(|Cd| = ∞) > 0

where Cd is the closed component in the dual lattice containing the origin.
Because in an infinite lattice every vertex could be the origin, this proves
Lemma 7.3.

Hence, we have shown that the critical probability pc for bond percolation
in 2 dimensions is 1

2
.
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