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In the last lecture, we talked about how to emulate one network on an-
other by constructing embeddings with low load, congestion and dilation. In
this lecture we apply this embedding technique to emulate a fault-free square
mesh on a faulty square mesh. Up to certain fault parameters we can achieve
embeddings with constant load and congestion and small dilation. This al-
lows us to use the result of the previous lecture to say that our we have an
emulation strategy with low slowdown. The material in this lecture is taken
from [1].

6.1 Introduction: Mesh emulation

An embedding is used to map nodes of a fault free network to nodes of faulty
network so that all the connections of the fault free network can be simulated
in the faulty network. This enables us to operate on a faulty network as if
it was fault free. The fault free network acts as the guest and the faulty
network acts as the host in the embedding.

G =⇒ Gf

Guest =⇒ Host

We will consider both a random fault model and adversarial fault model
and will prove that in either scenario, mesh is fault tolerant. We also show
that a constant slowdown can be achieved in the network for limited fault
probability in random fault model or limited no. of faults in adversarial
faulty model. We will consider the special case of mesh networks.
In the random model, we assume that each processor fails independently
with some probability p < p′, where p′ is a small constant. We refer to a
mesh with such failures as a p−faulty mesh. In the worst-case model, we
assume that an adversary chooses k < n processors to fail. We will study
the following parameters:

• Congestion C: Maximum number of guest network edges using same
edge in the host network.
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Figure 1: r × rsubmesh of (α, r)gridlike mesh

• Dilation D: Maximum length of a path in the host network that maps
to an edge in the guest network.

• Load L: Maximum number of nodes mapped to a single node of host
Graph.

These parameters decide the slow-down factor for the embedding. One unit
of time in the guest network can be simulated as O(L+D +C) units of time
in the simulated network. If a slowdown of at most r is required, then a
component of size Θ(n

r
) must be present. If only one component had all the

mapped nodes and less then n nodes are there in that component, then load
would have exceeded r and hence slowdown would have been more than r.

Now, a faulty n × n mesh is said to be (α, r) gridlike if for every r × r

submesh, there are at least (1−α)r vertex disjoint fault free paths connecting
the left side to the right and least (1 − α)r vertex disjoint fault free paths
connecting the top side to the bottom, as shown in figure 1. Each of these
paths must have length at most 2r. Also, an (1

3
, r) grid like mesh is referred

to as r-grid like mesh.
We observe that an (α, r) grid like mesh has at least ((1 − α)r)2 nodes

which lie both on horizontal as well as vertical paths. Lets call these nodes
as good points. In this way, (1

3
, r) grid like mesh has at least 4

9
r2 good nodes

in each r × r sub mesh.
Now, we will first prove that a fault free n × n mesh can be emulated

on an r-grid like n × n mesh with O(r) slowdown. Then we prove that in
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adversarial fault case, the mesh is grid like for a limited number of faults.
Finally, we show that in randomized fault model, the mesh is (α, r) grid like
with high probability. This leads us to show that a faulty mesh with limited
fault probability can emulate a n×n fault free mesh with slow down O(logn)
with high probability. This proves the applicability of embeddings in mesh
structures with faults.

6.2 Embedding in r-grid like mesh

In this section, we will prove that an r-grid like mesh can emulate fault free
mesh with O(r) slow down.

Theorem 6.1 An n×n mesh can be embedded into an n×n r-gridlike mesh
with O(1) load, O(1) congestion and O(r) dilation.

Proof.

We emulate n
3
×

n
3

fault free mesh and then increase load of each node by a
factor of 9. The given n×n mesh can be divided into r× r non- overlapping
sub meshes and the total number of such sub meshes possible are O(n2).
Now consider a single r × r sub mesh, it has at least 2

3
r horizontal vertex

r

r r

r

Figure 2: two adjacent r × r submeshes

disjoint path paths from left side to right side of the submesh as the given
mesh is r−gridlike. Consider the r × r identical adjacent to this on right
side, that submesh will also have 2

3
r paths. So there will be at least r

3
vertex

disjoint paths from nodes on left side of left submesh to the nodes on right
side of right submesh. This set paths will exist between any two adjacent r x
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Figure 3: sequence of three r × r submeshes

r sub meshes and the length of these paths will be atmost 4r. Now consider
a sequence of r × r submeshes from left side of n × n mesh to its right side
and number the submeshes as 1, 2, 3, ..., n

r
. If we consider i, i + 1 and i + 2

meshes of this sequence and let A be the set of vertex disjoint paths from
left side of mesh i to the right side of mesh i + 1 and B be the set of vertex
disjoint paths from right side of mesh i + 2 to left side of mesh i + 1. The
mesh i + 1 has 2

3
r vertical vertex disjoint paths from top to bottom. With

the help of these paths we can join the paths in set A with set B and can
construct r

3
vertex disjoint paths from left side of mesh i to right side of

mesh i + 2 , as shown in figure 3. The maximum length of the part of these
newly constructed paths in mesh i + 1 is 4r, as vertex disjoint paths can be
of length 2r in each horizontal and vertical directions. We can join r

3
nodes

on left side of n × n to the right side of this mesh. The total length of these
paths will be at most 4r · n

r
= 4n.

Here, Highways refer to the sequences of r × r sub meshes and lanes refers
to vertex disjoint paths from one side to its opposite side in an n × n mesh.
On each highway, we have ensured r

3
lanes. We have n

r
highways in the mesh

r× r mesh, so in all we have at least n
3

lanes in horizontal direction and also

in vertical direction. These n
3

paths in each direction will ensure n2

9
good

nodes.
We can map the nodes of fault free mesh n

3
×

n
3

to these good nodes. In this
embedding we have ensured:

• Load = 1 (as node to node mapping is one-one)
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• Dilation = 8r (one edge of guest network may have to traverse 4r edges
in adjacent submeshes)

• Congestion = 2 (an edge may be shared by at most one horizontal and
one vertical path in host)

If we map 9 nodes of n × n to a single node of n
3
×

n
3

mesh then we can
emulate the n × n mesh using a r-gridlike mesh. Now the parameters will
become:

• Load = 9

• Dilation = 8r

• Congestion = 6

In this way, we have obtained an embedding for n × n non faulty mesh on
an r-gridlike faulty mesh with O(r) slow down.

6.3 Adversarial Faults and (α, r) gridlike meshes

In this section, we prove that an n × n mesh is (α, k
α
) gridlike even after k

adversarial faults.

Lemma 6.1 An n × n mesh with k < n faults is (α, k
α
) gridlike for any α

such that k
n

< α < 1.

Proof.

Consider a sub mesh of size k
α
×

k
α

and assume that all the k faults are
contained in this submesh. If we consider k

α
rows and k

α
columns of a fault

free k
α
×

k
α

mesh then it has k
α

vertex disjoint paths in horizontal and vertical
directions. Now, each faulty node can potentially remove a row and a column.
So, k faults can remove k horizontal and k vertical paths from the fault free
k
α
×

k
α

submesh. As k
n

< α < 1, the submesh contains at least k
α
−k horizontal

and k
α
−k vertical vertex disjoint paths. Hence, each k

α
×

k
α

mesh has at least
k
α
− k = k( 1

α
− 1) = k

α
(1−α) horizontal and vertical paths. Hence, the mesh

is (α, k
α
)gridlike.

This proof helps us to appreciate the robustness of the grid like property.
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6.4 Emulating in a Random Fault Model

In this section, we will figure out whether we can emulate a fault free model
in a random faulty model. We have already shown that ideal mesh can
be emulated in an (α, r) gridlike mesh with O(r) slowdown under certain
conditions. We now prove that a random fault model ensures that the mesh
is (α, r) gridlike with high probability. Specifically, we prove that for a given
value of α, P (α) exists such that for all p < P (α), a p−faulty mesh will be
(α, r) gridlike with probability at least 1 −

1
n

where r = O(log 1

α

n). Now,

the definition of (α, r) gridlike mesh requires (1 − α)r vertex disjoint paths
to be of length at most 2r. We first establish a lower bound for the number
of vertex disjoint paths of length at most 2r in an r × r mesh for given
number of total number of vertex disjoint paths. Then, we use this lemma
and Menger’s Theorem to prove that a p−faulty mesh is (α, r) gridlike mesh
with high probability.

Lets prove the following lemma.

Lemma 6.2 If there are (1 −
α
2
)r vertex disjoint paths from one side of an

r × r mesh to the other side, then at least (1 − α)r of them have length at
most 2r.

Proof.

Let βr be the number of vertex disjoint paths , with length at least 2r , out
of the given (1 −

α
2
)r vertex disjoint paths. We also observe that any path

from one side to the other side in an r × r mesh will have length at least r.
Now, the number of nodes involved in the vertex disjoint paths are at least
(1− α

2
β)r · r + 2βr · r. But the total number of nodes in an r × r mesh is at

most r2. Therefore, (1 −
α
2
− β)r2 ≤ r2. This implies that 1 −

α
2
− β ≤ 1.

Hence, β ≤
α
2
.

So among the given set of (1 −
α
2
)r vertex disjoint paths, at most (α

2
)r

paths have length more than 2r. Hence, at least (1 −
α
2
)r − α

2
r paths out of

the given set have length at most 2r. Hence proved.

Theorem 6.2 Given a constant α > 0, there is a constant p(α) > 0 such
that a p-faulty n×n mesh is (α, r) gridlike with probability at least 1− 1

n
where

r = O(log 1

p

n) and p < p(α).

Proof. We prove that if the given faulty mesh is not (α, r) gridlike, then
there will be some r × r submesh which will have less than (1 − α)r vertex
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disjoint paths in any direction. The lemma proved above will then provide an
upper limit on total number of vertex disjoint paths in the r× r mesh. Then
an application of Menger’s Theorem provides an upper bound on number of
non-faulty vertices which is translated into probability that a mesh is not
(α, r) gridlike.

Consider an r × r submesh in the given p−faulty mesh. Lets consider
events P1 and P2 as given below:
P1: There are (1 −

α
2
)r vertex disjoint paths from one side of an r × r mesh

to the other side.
P2: There are at least (1−α)r vertex disjoint paths from one side of an r× r

mesh to the other side that have length at most 2r.

Now, the above lemma states that P1 implies P2. By contraposition,
¬P2 → ¬P1 which implies that Pr(¬P2) ≤ Pr(¬P1).

If the mesh is not (α, r)−gridlike, then there are less than (1−α)r vertex
disjoint paths of length at most 2r from one side to another side. It is ¬P2

and implies that there cannot be (1− α
2
)r vertex disjoint paths of any length

from one side to another side which is ¬P1.
Now, we will apply Menger’s Theorem. The result establishes relation

between number of vertex disjoint paths and minimum number of nodes to
be removed from the graph to disconnect it. Two sets A and B are said to
be k-connected if removal of at most k − 1 vertices cannot disconnect them.
The Menger’s Theorem is as follows :

Theorem 6.3 Two sets A and B are k-connected iff there are k vertex dis-
joint paths between A and B.

Applying Menger’s Theorem to the current problem, we observe that if a
mesh is not (α, r)-gridlike, then there exists a set of at most (1− α

2
)r vertices

whose removal disconnects the two sides. This implies that there is some
cut along which number of non-faulty vertices is less than (1− α

2
)r. In other

words, there will be a set of fewer than (1 −
α
2
)r non-faulty nodes whose

removal will disconnect the mesh. That cut will be the bottleneck for the
number of vertex disjoint paths. Any cut that disconnects left side from the
right side of the r × r submesh will contain at least one node in each row.
Also, we observe that any cut of a mesh contains a set of nodes that forms
a simple path from the top to bottom. These two properties allow us to
consider only vertical cuts allowing 45 degrees of freedom (If ith vertex was
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chosen in row j then one out of (i, i − 1, i + 1)th vertices can be considered
to be part of the cut in (j + 1)th row).

Total number of such cuts = r · 3r−1 Lets try to bound the probability
that such a vertical cut exists which has at most (1 −

α
2
)non-faulty nodes.

Now, assume that 2ep

α
< 1.

Let Pr(A cut is bad) = p1. Then,

p1 ≤

(1−α

2
)r

∑

k=1

(

r

k

)

(1 − p)kpr−k

≤

(1−α

2
)r

∑

k=1

(

r

k

)

pr−k

≤

(1−α

2
)r

∑

k=1

(

epr

r − k

)r−k

≤

(1−α

2
)r

∑

k=1

(

epr

r − (1 −
α
2
)r

)r−k

≤

(1−α

2
)r

∑

k=1

(

2ep

α

)r−k

≤ c ·

(

2ep

α

)r

Here, the last step follows from the assumption made above.
Pr(There exists a bad cut) ≤ r3rc(2ep

α
)r

= cr(6ep

α
)r where 6ep

α
< 1 or p < α

6e

The above discussion was based upon cut within an r × r submesh. Lets
consider the complete n × n mesh. The number of r × r submeshes present
in an n×n mesh is O(n2). So, Pr(n×n mesh is not (α, r) grid like ) = Pr(at
least one r × r submesh in the given n × n mesh has a bad cut) i.e. at most
(number of total r × r submeshes)(Pr(a given r × r submesh has a bad cut)
which is at most rn2(6ep

α
)r.

If this last term is ≤
1
n
, then the given mesh will be (α, r) grid like with

probability at least 1 −
1
n
. This condition is satisfied when r = O(log 1

p

n).

Hence the theorem has been proved.
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6.5 Related Results

Theorem 6.4 With probability at least 1− 1
n
, a p-faulty n×n mesh with load

O(1), congestion O(1) and dilation O(log 1

p

n) i.e. with slow down O(log 1

p

n).

This result is obtained by combining Theorem 6.1 and Theorem 6.2. Theo-
rem 6.2 shows that a p-faulty mesh is (1

3
, r)-grid like with probability at least

1 −
1
n

and Theorem 6.1 shows that non-faulty n × n can be emulated on an
r-gridlike mesh with O(r) dilation.

Theorem 6.5 An r-gridlike n×n mesh can emulate a fault free m×m mesh
with O(r + (m

n
)2) slowdown.

We first emulate n × n on the r-gridlike mesh using Theorem 6.1 and then
map nodes of m × m mesh to the nodes of n × n non faulty mesh. This
second mapping makes the total load as O(m

n
)2).Hence, in final embedding,

load is (m
n
)2, dilation is r and congestion is m

n
.
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