CSL860: Routing in the presence of faults Amitabha Bagchi
IIT Delhi Scribe: Md Tanveer Alam, Harsh Sanghvi

Lecture 5: Scheduling in Networks and Embeddings
23rd and 24th September, 2008

5.1 Introduction

The two main aspects of any network are routing and scheduling. Routing
is concerned with deciding the path between any two nodes of the network.
Scheduling deals with the policies which decide how to send packets across
links.

Uptil now, we had been studying the routing aspect of the network. We
had a brief look at the graph properties like diameter and expansion. Then
we looked at the effect that faults have on the connectivity of the network.
We studied about two kinds of faults namely adversarial faults and random
faults.

Now, we turn our attention to the other very important aspect of the
network i.e. scheduling. Scheduling policy is a very important factor in
determining the efficiency and robustness of the network. As before, we would
start with a very simple model. Later, we would study how the behaviour of
network changes on introduction of faults in the network. The material in
this lecture is taken from Leighton, Maggs and Rao’s 1994 paper [1].

5.2 Some results from probability theory

1. Chernoff bounds: Let X, Xs...... , X, be independent binary random
variables (it can only aquire values 0 and 1), and X = """ | X then
Vo >0 and > E(X)

P(X > (14 6)p) < e mn@5

For0 <6 <1
P(X <(1—0)u)>e s

2. Lovasz local lemma: Let A;, As...... , A, be a set of ‘bad’ events. By
‘bad’ events, we mean that we are interested in the event in which
none of A; where 1 < i < n, happens. Suppose that every event A; is

1

independent of all but at most d events and Pr(A;) <pV1<i< n.
If ep(d+ 1) < 1, then

P’/’(ﬁ AZ) >0
=1

5.3 Scheduling and its parameters

The model: Consider the following setting. We have a network G(V, E') and
a collection of paths R = {(u,v,p) : u,v € V, pisapathin G between u and v}.
As before, we make the following assumptions.

e At any given time only one packet travels through any link.
e All packet movements are synchronous w.r.t. a global clock.
e FEach node is allowed to buffer as many packets as it needs to.

The parameters: To enable us to quantize the scheduling problem, we
define the following parameters of scheduling.

e Congestion(C'): Congestion is defined as the maximum over all the
edges of the number of paths using an edge.

e Dilation(D): Dilation is the maximum length of paths in R.

To illustrate, the ring network model discussed earlier (refer Figure 1 from
Lecture 1) with m initial packets and n nodes will have congestion C' < m
because in the worst case all packets can pass through a single edge. Also,
dilation D < § which is the maximum length of all paths in the ring model.

Now, given a scheduling problem with parameters C' and D, let us discuss
it’s approximate upper bound and lower bound. By definition of congestion,
a packet may have to wait for C' steps and then move D steps, so the lower
bound can be taken as Q(C + D). There may be conditions when it may
take lesser steps to route and hence the lower bound is not strict.

Also for the upper bound, consider the worst case when every edge has
congestion C' and each path has D edges. Hence, it would require at most
O(CD) steps to sink all the packets. u

Theorem 5.1 Given any scheduling problem with parameters C', D we can
route all packets in O((C + D)2'e” max(C.D)) gteps.

packets

time

Figure 1: Packets with independent movements

Proof: We prove the above theorem by construction of a randomized schedul-
ing algorithm. Consider the situation when all packets move independent of
congestion as shown in Figure 1. The figure shows all the packets moving un-
obstructed in time along the X-axis. We will describe a recursive algorithm
to introduce random delays in between these packet paths. Our objective
will be to reduce congestion from C' to a constant.

Suppose in the situation shown in Figure 1, we give a random initial delay
to all the packets chosen independently from [2C] where [k] = {0, 1, 2,...,
k}. After this initial delay, we would make every packet move independently
as if there were no delay. The new situation is shown in Figure 2. Notice
that while in Figure 1, the maximum time taken by any path was D, now
maximum time is D + 2C. In general, congestion would come down, as
packet’s time of travel has been spread randomly.

We shall use the following notation:

e t-interval: an interval of t consecutive time steps.

e t-frame: a t-interval beginning at a multiple of t.

o [;: I, =[18(logl; +1)] for all j > 1 where I, = max(C, D)

o A.(l;): the event that more than I; packets use an edge e in an I;-
interval. Alternatively, C' > I; for an I;-frame.

Now we describe a recursive algorithm where at each level of recursion j
we divide the timeline into I;-intervals and convert each of these [;-intervals
into sub-problems of the original scheduling problem independent of other
intervals at the same level.

I\

I;-interval

J

packets

C+2D

- t; - time

Figure 2: Packets with initial random delays applied

We consider any [;-interval in this new situation and call this particular
I;-interval as 7. Now in this interval 7, for any edge e, let packets numbered
1,2,..., 1 packets pass through edge e. Clearly, [< C'. We define the random
variables X1, X5, ..., X; such that:

{1 if the packet j uses e in interval J
j —

0 otherwise

Hence, the random variable X = 22:1 X; would denote the number of
packets passing through an edge e. Consider any edge e on the timeline
showing the flow of any packet. Since, the line is being shifted with an initial
delay, the edge on the timeline of the packet can either be inside J or outside.
Now, for an edge e to remain inside 7, we can give at most I; initial delays
to the packet. In all the other cases the edge e would get outside the interval

J.

I
PX;=1) < —
()< 2C
(Since from 2C' possible initial delays only I; values lead to this event of

Now, as [< C' we get,

Using Chernoff’s bounds

P(X>1)=P(X>(1+ e)%)

-1

e’ 6
6—3(10g max(C,D)+1)

= (e.max(C, D))™?

IA A

But, since we chose J to be any arbitrary [-interval, we can have O(2C'+
D) such intervals (i.e. for different values of ¢;, see Figure 2) all of which are
equi-probable. Hence, we conclude

20+ D
(e.max(C, D))3

P(A()) <

We have so far bounded p of the Lovasz Lemma. Next, to apply Lovasz
Lemma, we need to know the bound on the value of d. We notice that the
only way when the congestion of two edges is dependent is when there are
one or more packets common to them. For any edge e the maximum number
of paths including e is C' (by definition of congestion C'). Also, the maximum
number of edges for each such path is D (by definition of dilation D). Hence,
maximum number of edges dependent on edge e < C'D. Thus, d < CD.

Now to test whether ep(d 4+ 1) < 1 we plug in the values of p < (e.nig%
and d < CD. It turns out that ep(d+1) < 1 holds for all values of C' and D.

Thus applying Lovasz Lemma, we can conclude that there exists some
setting of starting delays for which none of the A.(I;) events occur for all
edges e. Let us take one such setting. We have clearly upper bounded the
congestion at each edge e to I by definition of event A.(I;). Now divide the
time space into Ij-frames. In each [;-frame, congestion < I; and dilation

< I. Now, each I;-frame is a subproblem of the original problem.

A
I-interval

J

packets

D+2C

>~ time

~

Ir-interval N

~,

_ 3(2C+D)

30

Figure 3: Recursion on [,

Now, we apply the same algorithm recursively to the I;-frame. We scale
up each [j-frame to 3I; and give initial delays from the set [21;] within each
Ii-frame J (see Figure 3). We can similarly choose any I, interval K and
define A7 (1) as the event when edge e has congestion > I, in any I,-interval
IC within [;-frame [J. As before, we set up random variables X, X5,..., X]
and X = 22:1 X;. We can argue similarly that for some I within 7,

I
()_2]1
and hence as [< [; at this level of recursion,

EX) < L
2
Therefore by Chernoftf bounds,

P(X>1)=P(X >(1+ e)%)

< e < p—3(og Ii+1)

1
N (6[1)3
And thus for any Is-interval within 7,
1
P(A7(I)) < (no of Ir-intervals in J) x AL
1
<3I
> o X (el,)?
3
— e 3

Also, similar to previous argument, Lovasz Lemma parameter d < CD = 2.
(Since in each I;-frame congestion C' < I; and dilation D < [;). It turns out
that ep(d+ 1) < 1 which enables us to apply Lovasz Local Lemma and arrive
at the conclusion that in each [;-frame, there exists a setting of inital delay
values such that none of the A7 (I,) events happen. We have thus shown
the existence of a schedule in each 7, such that each I,-frame within J has
congestion C' < [, and dilation D < I5.

We can now choose any of the setting in every I[j-interval (which has
been shown to exist) and carry out this recursive step successively. We do

7

the recursion for levels Iy, I, I5 . .. Iy (where k is the total number of recursion
steps) until the congestion comes to a constant value i.e. 18. At level Iy,
since C' < [, and D < I, and I, = 18 which is a constant, at this level
we can always schedule the packets in at most I? steps which is a constant
(since scheduling problem in worst case is O(C'D)). Also, at every level of
recursion, we expanded the time space 3 times, so the total number of steps in
scheduling = Iy x 3% x I}, = 18.3¥(2C + D), which is O((C + D)200eg” maz(C.D)))
steps. And since, 2007 (€+D)) can be a small quantity as compared to C' and
D, we can approximate our solution at O(C + D). n

5.4 Embeddings

An embedding is a mapping from a logical network (guest () to a real network
(host H).
¢:V(G)— V(H)

A set of edges in guest network represent a set of paths in host network.

P(E(G)) = {(d(u), d(v)) : (u,v) € E(G)}

b
1 2 3 4 5
(&) (b)) (o) (d (¢
e d
Guest (G) Host(H)

Figure 4: Example of a guest and host network and the embedding

5.4.1 Types of Embeddings

Consider the guest and the host network shown in Figure 4. There are several
ways in which we can embed the guest network in the host network. We shall

8

consider them one by one.

1. Simple Embedding: In a simple embedding, the mapping between
the guest and the host network may be one-to-one or many-to-one.
For example the embedding shown in Figure 4 is a simple embedding.
Figure 5 shows another case of simple embedding when many guest
nodes are mapped to a single host node. This kind of mapping leads
to increased load in the host node that hosts more than one guests.
As a result, the time taken by packets to travel through the network

increases.
1 2 3 4
@ @ @ o
@ (b) (© (d.e)

Figure 5: Simple embedding

2. Multiple embedding: In multiple embedding, one node in the guest

1 2 3 4 5 6
@ ® @ ® ® ®
@ (b) (© (d) (€) @

Figure 6: Multiple embedding

network may be mapped to many nodes in the host network. An ex-
ample is shown in Figure 6. However, this setting leads to problem of
maintaining consistency between identical guest nodes. Synchroniza-
tion between these nodes becomes an issue.

3. Dynamic Embedding: Dynamic embeddings are those embeddings
in which the guest to host mapping keeps on changing from time to
time. In these kinds of embeddings there are additional overheads of
maintaining consistency throughout the network about the current con-
figuration. This is normally achieved by additional information packets
relayed throughout the network according to some fixed protocol.

5.4.2 A Model of Parallel Computation

We are now in a position to describe a simple model for parallel computation.
We build upon our earlier network model of synchronous packet transfer.
Now, we add the criterion that in each step a node can also do some compu-
tation on the packets. Notice that this criterion adds several synchronization
issues with the network, such as, before computation the input packet must
arrive at the node and that output cannot be produced without input.
Parameters of Embeddings: Embeddings add an additional parameter,
load (L), to the parameters congestion and dilation. Load may be defined
as the maximum over all nodes, the number of packets that any node has to
process. Hence the parameters of embeddings are:

1. Load(L)
2. Congestion(C)
3. Dilation(D)

An Example: Consider the \/n by y/n grid mesh G as a guest network.
Suppose we want to map this mesh network to the serial network H of n
nodes (Figure 7).We define a simple embedding as follows:

Vn
® L 4 ® ® ® L 4 ®

Figure 7: Embedding from mesh to line network

10

Map the first /n row nodes of G to the first \/n nodes of H, the second
v/n row nodes of to the next /n nodes of H and so on. Thus each row maps
to v/n contiguous nodes in H.

This is an example of a simple embedding. Clearly since this is a one-to-
one mapping the load L = 1, congestion C' = y/n. Also, notice that while the
horizontal edges are mapped to edges in the host, vertical edges are mapped
to v/n length paths in the host. Hence the new dilation will be D = /n.

5.4.3 The Routing Problem: The Complete Picture

We are now in a position to define the complete routing problem. Given a
path system P of host network H where,

P ={(u,v,p):u,v € V(H),pis a path from u to v in H}
and an embedding ¢ : V(G) — V(H), a routing problem is defined by
RS = {(x,p) : v € ¢(BE(G)),p is the path for z in P}

Also note that it takes O(L + C + D) steps in H for all packets to be success-
fully dispatched because it takes at most L steps to compute packets and at
most O(C+D) steps for routing. n

References
[1] F. Leighton, B. Maggs, and S. Rao. Packet routing and job-shop schedul-

ing in O(congestion + dilation) steps. Combinatorica, 14(2):167-186,
1994.

11

