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4.1 Introduction: The Random fault model

Until now we were talking mostly about faults which are caused by some
adversary who knows about the network, so he/she affects the network in the
worst way. It has been said for a long time that computer science treats the
worst case scenarios, which happen rarely, so these results are not practically
much useful. But here we will be studying random faults exploring highly
probable events (i.e. more frequently occurring scenarios). Note that, in this
lecture node and vertex are used interchangeably.
The model. Each node of the network can become faulty with probability
p independent of all other nodes. More formally let G = (V, E) be a graph
corresponding to network under study. For each vertex v ∈ V , let us define
a random variable Xv s.t.

P (Xv = 1) = 1− p

and
P (Xv = 0) = p

where 0 ≤ p ≤ 1. Xv = 0 means node v is faulty. A faulty node is removed
from network with all of its edges. Let W = {v ∈ V : Xv = 1} and Gf is the
graph induced by W . Although the model is an ideal one in the sense that
fault probability i.e. p, for all nodes is equal and independent of all other
nodes, but it is a good start to understand the fundamentals.

4.2 A lower bound on the fault probability for graph

survival

Intuitively it appears that in general this situation might be easier to handle
since there is no malicious adversarial intent behind the distribution of node
failures. But, in general this is not true. We begin this section by showing
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that there are families of graphs for which a fault probability of Θ(α) causes
the graph to disintegrate into sublinear fragments, where α is the node ex-
pansion of the graph. In other words, in these graphs Θ(αn) random node
failures can be catastrophic: they don’t even allow us to find a linear sized
connected component, hence making it impossible to find a linear sized con-
nected component with good expansion. Let’s first prove a lemma that will
be used in the proof of main theorem of this section.

Lemma 4.1 Let G = (V, E) be a graph with maximum vertex degree δ. Then
nδ2(r−1) is an upper bound on the number of connected subgraphs of G induced
by exactly r vertices where n = |V |.

Proof. We know that there is atleast one spanning tree with r − 1 edges
for a connected subgraph with r vertices. And if the subgraph is an induced
one then no two different subgraph can have same spanning tree as they will
have different vertex set and one vertex set induces exactly one subgraph.
Also for every tree with r− 1 edges there is atleast one rooted tree which in
turn is characterized by Eulerian tour of length 2(r− 1), in which each edge
is used atmost twice, starting at root of that tree and a Eulerian tour can be
seen as a special random walk which starts and ends at the same vertex.
Let N r

1 = number of connected subgraphs induced by exactly r vertices and
containing a given vertex v ∈ V , and N r

2 = number of spanning trees of size
r rooted at same vertex v, then

N r
1 ≤ N r

2 (1)

Let N r
3 = number of random walks of size r starting at vertex v, then

N r
2 ≤ N

2(r−1)
3 (2)

Also during random walk at any step we have atmost δ choices to select
next vertex so

N r
3 ≤ δr (3)

Now from (1), (2) and (3) we have

N r
1 ≤ δ2(r−1) (4)

Now summing over all |V | vertices, number of connected subgraphs of G
induced by exactly r vertices is ≤ nδ2(r−1).
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Theorem 4.1 There is a constant γ s.t. for all α < γ there is an infinite
family of graphs with expansion θ(α) for which fault probability c2α causes
that graph to break into the components of size o(n) with high probability.

Proof. We use the family of graphs constructed in the proof of theorem 3.2
of lecture 3, i.e. let Gn = (Vn, En) be an infinite family of constant degree
expanders with constant expansion γ and degree δ. Construct a graph, H ,
which is a copy of G(which is a member of family Gn) with each edge of
G replaced by a chain of k nodes (between its two endpoints). Figure 1
illustrates the construction. From proof of that theorem in lecture 3 we
know that H has expansion θ(1/k).

H is constructed by replacing each edge of G by a chain of k (=3 here) nodes.

HG

k = 3

Inserted Node

Node ∈ G

Figure 1: Construction of H from G

Let us take a subgraph H ′ of H which has following properties:

1. H is connected and contains exactly r nodes of G.

2. All boundary nodes of H ′ are of G, i.e. ΓH(H ′) ⊂ V (G).

Clearly, to satisfy the second property we should construct H ′ in a fashion
that if a node v ∈ V (G) is in H ′ then all k nodes which were inserted during
construction of H on any edge (of G) of v should also be in H ′(see figure 2).
We say that a subgraph “survives” if none of its nodes became faulty.
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Boundary node of H ′

chain of k nodes

G node

H ′

G node in H ′

Figure 2: Choosing H ′ from H

Let failure probability is p = (2 ln δ+2)
k

. As we have already proved that
expansion(α) of H is θ( 1

k
) and δ is a constant so p is c2α for some constant

c2.
We begin by seeing that:

|V (H ′)| ≥ (k + 1)(r − 1) (5)

Let us argue this, as H ′ has r nodes of G and is connected so it has
atleast r − 1 edges of G (of course, replaced by chain of k nodes) and we
can associate with each edge (of G) k + 1 nodes where k are those inserted
nodes and 1 is the corresponding nodes of G. Now using multiplicative law
of probability:

P [H ′ survives ] = (1− p)|V (H′)|

using (5) and considering (1− p) ≤ 1,

≤ (1− p)(k+1)(r−1)
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Since e−x ≥ 1− x, it follows that

≤ e−p(k+1)(r−1)

≤ e−pk(r−1)

Substituting p = (2 ln δ+2)
k

, we get

= e−(2 ln δ+2)(r−1)

Now by definition of H ′ once we pick up r nodes then other one’s are
fixed so for every H ′ there is a connected subgraph of G induced by exactly
r nodes and vice-versa. So using lemma 4.1 maximum number of such H ′

having exactly r nodes is nδ2(r−1) where n = |V (H)|. So taking r = ln n + 1,
we get

P [∃ a H ′ that survives] ≤ Number of possible H ′ × P [H ′ survives ]

≤ nδ2(r−1)e−2(2 ln δ+2(r−1)

≤ nδ2 lnne−2(ln δ+2) lnn

≤ nδ2 lnneln δ−2 lnn

eln n−2

=
n

n2

=
1

n

Clearly θ(k ln n) size components are very less probable. So we can safely
say that graph is broken in components of size o(n) with high probability.

However, the expansion of a graph is not necessarily the critical point
(i.e., the point at which the graph disintegrates into components of size o(n),
with high probability) for all graphs. There are several important classes of
graphs which can sustain a much higher fault probability and still yield a
linear sized connected component with good expansion. One specific case is
the mesh. In the following, we describe a general technique to quantify this
higher fault probability.

4.3 An upper bound on fault probability for retaining

graph expansion

Let us introduce some more notations and definitions which will be needed
shortly. Let G = (V, E) be a connected graph and let U ⊆ V then U is called
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U , not compact

U , compact

Figure 3: Illustrating the concept of compact sets
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Compact Not Compact

G Node

U Node

Figure 4: Illustrating the concept of compact sets
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compact iff both U and G \ U are connected. For illustration see figure (3)
and figure (4).

Let P (U) is the smallest tree which spans boundary of U in G, ΓG(U).
Let U is the set of all compact subsets of V (G). Then we define span(σ) of
graph G as

σ = max
U∈U

{

|P (U)|

|ΓG(U)|

}

We need to develop some concepts and proofs which will be used in our main
theorem. Let us start with this claim.

Claim 4.2 Let U1 and U2 are two compact sets which share the same bound-
ary, i.e. ΓG(U1) = ΓG(U2) then either they are same or disjoint, i.e. either
U1 = U2 or U1

⋂

U2 = ∅.

U2

U1

v
u w

Figure 5: A path from U2 to U1

Proof. Let us prove by contradiction. Let v ∈ U1 ∩ U2 and u ∈ U1 \ U2.
If U1 ⊆ U2 then such a u wouldn’t exist but then we can take u ∈ U2 \ U1.
Notice that here U2 6⊂ U1 otherwise U1 = U2 which is contradiction so we
are done already. Now if such a u exists then there is a path from v to u
lying within U1(as U1 is compact) and starting in U2 but ending in U1 \ U2

which imply there is a node w ∈ U1 \ U2 (w may be u or some other node
on path v → u) s.t. w ∈ ΓG(U2). But w ∈ U1 so w 6∈ ΓG(U1). This shows
ΓG(U1) 6= ΓG(U2), which is contradiction.

Claim 4.3 Let G be a graph with span σ, max degree δ ≥ 3 and let |V (G)| =
n then nδ3σk is an upper bound on number of sets compact in G with boundary
size exactly k.
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Common Boundary

Disjoint compact sets sharing common boundary(δ = 3 here)

Figure 6: Compact sets sharing a common boundary

Proof. Let Nk is the number of sets compact in G with boundary size exactly
k. From definition of span there exists a tree of size ≤ kσ which spans its
boundary. Also let this boundary is also shared by some other compact sets.
Then all those compact sets have to be disjoint (using claim 4.2) so each
vertex of boundary must have at least one edge to each of those compact sets
and max vertex degree is δ so atmost δ compact sets can share a common
boundary(see figure 6). Lastly any spanning tree of size≤ σk can be extented
to a tree of size σk as G\U is compact and a tree of size σk can cover atmost
(

σk
k

)

boundary sets of size k. Using all these facts,

Nk ≤

(

σk

k

)

× δ × ( Number of trees of size σk)

= δ × nδ2(σk−1) ×

(

σk

k

)

Since
(

n
k

)

≤ ( en
k

)k, it follows that,

Nk ≤ δ × nδ2(σk−1) × (eσ)k

≤ nδ2σk × (eσ)k
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Since eσ ≤ eσ (as σ, e ≥ 1) and eσ ≤ δσ (as δ ≥ 3 > e) we have (eσ)k ≤
eσk ≤ δσk. Thus it follows that

Nk ≤ nδ2σkδσk

= nδ3σk

We will also need this lemma which has not been proved here but this
result can be drawn from theorem 2.10 of lecture 2. A more rigorous proof
by using same concept can be found here[1].

Lemma 4.2 Let G = (V, E) be a connected graph with maximum degree δ.
For any subset S ⊂ V with |S| ≤ |V |/2 there exist a compact set KG(S) in
G whose expansion is atmost δα(S).

Lastly, we will use this algorithm to obtain linear size components of good
expansion. Let Gf = (Vf , Ef) be the faulty version of G where each node is
made faulty independently with probability p. An edge (u, v) ∈ E remains
in Ef if and only if both u and v are non-faulty.

Algorithm PruneCompact(ǫ):

1. G0 ← Gf ; i← 0

2. while |V (Gi)| > |V (Gf )|/4 and ∃Si ∈ V (Gi) s.t. (|ΓGi
(Si)| ≤ (ǫ δ).α|Si| and |Si| ≤

|Gi|/2)

3. Ki ← KGi
(Si)

4. Gi+1 ← Gi \Ki

5. i← i + 1

6. end while

7. H ← Gi

Theorem 4.4 Consider a graph G with max. degree δ, span σ, expansion
α > (rδ ln3 n)/n for some sufficiently large constant r and |ΓG(U)| ≥ logδ |U |
for every U ⊂ V (G) and |U | ≤ |V (G)|/2. Then, with high probability,
PruneCompact(ǫ) returns H of size > n/4 with expansion atleast (ǫ/δ).α
provided p ≤ 1/(16eδ8σ).
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Proof. Let T = G \H . Hence T is the union of all the culled regions. Let
T1, T2, . . . , Tk be maximal connected components of T .

Claim 4.5 ∀Ti ∈ T , Ti is compact in Gf .

K3
Kj

Gj+1

Ti

ik < j

Ki3

Ki4

Ki5

K9

Ki2

Ki1

Figure 7: Various component connected through Ti

Proof. Let K ′
is be same as appearing in PruneCompact algorithm. Let a Ki

share its nodes with two (or more) T ′s, say Tj and Ts, but as Ki is compact
(so connected), it connects Tj and Ts. This contradicts the maximality of
T ′

is. So each Ki is fully contained within one Tj . So we can write

Ti =
⋃

j∈Ii

Kj

where Ii is some set of integers corresponding to Ti. Now let us prove the
claim by contradiction. We remove K ′

is from a Ti one by one in increasing
order of i (i vary on Ki) and let j is the smallest i s.t. removal of Kj

breaks the remaining graph into multiple components. Also Gj+1 was a
single component after removing Kj in PruneCompact algorithm, so it must
be contained in one of the components of Gf \ ∪k∈Ii,k≤jKk as we haven’t
removed any Ki for i ≥ j. Also Gj+1 was the only component left after
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removing Kj during pruning so all the components other than Gj+1 must
have been removed by K ′

is where i < j, so all these remaining components
consist entirely of some K ′

is where i < j. But as just before removing Kj

(here, not in pruning) these were connected through Kj(and hence through
Ti) to Gj+1 so we can extend Ti to include those Ki’s, but this contradicts
the maximality of Ti, which shows that Ti is compact.

Now let us consider the case that we have a Ti s.t. |Ti| ≤ |V (G)|/2, so.

|ΓG(Ti)| ≥ α|Ti| (6)

also

|ΓGf
(Ti)| ≤

∑

Kj∈Ti

|ΓGj
(Kj)| (7)

≤
∑

Kj∈Ti

ǫα|Kj| (8)

= ǫα|Ti| (9)

≤ ǫ|ΓGf
(Ti)| (10)

Here same concept is applied as in lemma 3.1 of lecture 3. In last step
(6) is used. Also probability of k − l nodes being faulty among k nodes

=

(

k

k − l

)

pk−l(1− p)l

≤

(

k

k − l

)

pk−l

≤

(

ek

l

)k−l

pk−l

Here we have used the fact that
(

n
k

)

≤
(

en
k

)k
, also in our case number of

faulty nodes is (|ΓG(Ti)| − |ΓGf
(Ti)|) ≥ (1 − ǫ)|ΓG(Ti)|, using (10). So this

probability is

(

|ΓG(Ti)|

|ΓG(Ti)| − |ΓGf
(Ti)|

)

p|ΓG(Ti)|−|ΓGf
(Ti)| ≤

(

ep

1− ǫ

)(1−ǫ)|ΓG(Ti)|
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if we set ǫ ≤ 1
4

and use ep ≤ 1
16δ8σ

P [Ti is pruned] ≤

(

1

12δ8σ

)3/4|ΓG(Ti)|

(11)

=
1

12
.δ−6σ|ΓG(Ti)| (12)

Now let us see upper bound on probability of pruning a Ti of size ≥
⌈logδ n⌉,

P [∃ a Ti s.t.|ΓG(Ti)| ≥ ⌈logδ n⌉] ≤
n

∑

t=⌈logδ n⌉

nδ3σtδ−6σt

=
n

∑

t=⌈logδ n⌉

nδ−3σt

≤ δ−3σ logδ n
n

∑

t=⌈logδ n⌉

n

≤ δ−3σ logδ nn2

= n2δ(logδ n)(−3σ)

= n2n(−3σ)

≤
1

n

For last step notice that σ > 1(from definition). Hence we see that it is
very unlikely that even order θ(logδ n) sized components are pruned away,
implying that it is highly probable that what we are left with after pruning
is a linear size component.

The other case we have to deal with is when all the Tis have boundary
smaller than ⌈logδ n⌉ but they add up to > 2n/3 nodes. We omit the proof
of that case, referring the reader to [1].

Here we see that there is an infinite family of graphs having large prob-
ability of retaining linear size components under random faults, of course
given some bounds on various parameters. But are there any familiar graphs
having this kind of robustness? Yes, the d-dimensional mesh has span 2 [1].
The d-dimensional mesh can sustain a fault probability inversely polynomial
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in d and still have a large component whose expansion Among other things,
this result can provide useful insights into the robustness of peer-to-peer net-
works like CAN [2], which behaves like a d-dimensional mesh in its steady
state. Basically, we have shown that CAN can tolerate a fault probability
which is inversely polynomial in its dimension without losing too much in its
expansion properties is no more than a factor of d worse than the original.
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