Homework 5

Due: 22nd April 2013, 11:59PM

Q1. (Levin et. al. Ex 5.1, page 73) Show that when $\left(X_{t}, Y_{t}\right)$ is a coupling satisfying the condition that if $X_{s}=Y_{s}$ then $X_{t}=Y_{t}, t \geq s$, for which X_{0} follows the distribution μ and Y_{0} is distributed as ν, then

$$
\left\|\mu P^{t}-\nu P^{t}\right\|_{T V} \leq \mathrm{P}\left(\tau_{c}>t\right)
$$

where τ_{c} is the coupling time of the two chains. Further, use this result to give an alternate proof of the convergence theorem.
Q2. (Source: Dana Randall's class on Markov Chain Monte Carlo Methods, CS8803, 2010) Consider two positive integers n, k with $k \leq n / 2$. Let Ω be the set of all subsets of $\{1,2, \ldots, n\}$ of size k. We define a lazy Markov chain on Ω as follows: Given a state S, with probability $1 / 2$ do nothing. Otherwise, pick at random $a \in S$ and $b \in\{1,2, \ldots, n\} \backslash S$ and move to state $S \backslash\{a\} \cup\{b\}$.

1. What is the stationary distribution of this Markov chain?
2. Use a coupling argument to upper bound $t_{\text {mix }}$ or $t_{\text {mix }}(\epsilon)$.
