Instructor: Amitabha Bagchi Submitted by: Your name here

Homework 1 Due: **24th January 2013**, **11:59PM**

- Q1. (Billingsley 1.3, page 15) Define a set A to be trifling if if for each $\epsilon > 0$ there exists a finite sequence of intervals I_k satisfying $A \subset \bigcup_k I_k$ and $\sum_k |I_k| < \epsilon$. This definition applies to all subsets of the real line, not just to all subsets of (0,1].
 - 1. Show that a trifling set is negligible (as defined in Billingsley).
 - 2. Show that the closure of a trifling set is trifling (where closure is defined as in analysis).
 - 3. Find an example of a bounded negligible set that is not triffing.
 - 4. Show that the closure of a negligible set may not be negligible.
 - 5. Show that the finite unions of trifling sets are trifling but that this may not be true for countable unions.
- **Q2.** (Billingsley 1.4, page 15) For i = 0, 1, ..., r 1, let $A_r(i)$ be the set of numbers in (0, 1] whose nonterminating expansions in base r do not contain the digit i.
 - 1. Show that $A_i(r)$ is triffing as defined in the previous question.
 - 2. Find a trifling set A such that every point in (0,1] can be represented in the form x + y where $x, y \in A$.
- Q3. (Billingsley 2.3, page 33) Let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be classes of sets in a common space Ω .
 - 1. Suppose that $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are fields satisfying $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Show that $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is an field.
 - 2. Suppose that $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are σ -fields satisfying $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Show by example that $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ need not be a σ -field.
- Q4. (Billingsley 4.5, page 65)

- 1. Show that $\lim_n P(\liminf_k A_n \cap A_k^c) = 0$. Hint: Show that $\lim \sup_n \liminf_k A_n \cap A_k^c$ is empty.
- 2. Put $A^* = \limsup_n A_n$ and $A_* = \liminf_n A_n$. Show that $P(A_n \setminus A^*) \to 0$ and $P(A_* \setminus A_n) \to 0$.